-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
liyinshuo
committed
Jun 8, 2021
1 parent
7622cf8
commit ddd1c32
Showing
2 changed files
with
203 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
import numbers | ||
import os.path as osp | ||
from collections import OrderedDict | ||
|
||
import mmcv | ||
import torch | ||
|
||
from mmedit.core import tensor2img | ||
from mmedit.models.common import ImgNormalize | ||
from ..builder import build_backbone, build_loss | ||
from ..registry import MODELS | ||
from .basic_restorer import BasicRestorer | ||
|
||
|
||
@MODELS.register_module() | ||
class DIC(BasicRestorer): | ||
"""DIC model for Face Super-Resolution. | ||
Paper: Deep Face Super-Resolution with Iterative Collaboration between | ||
Attentive Recovery and Landmark Estimation. | ||
Args: | ||
generator (dict): Config for the generator. | ||
pixel_loss (dict): Config for the pixel loss. | ||
align_loss (dict): Config for thr align loss. | ||
train_cfg (dict): Config for train. Default: None. | ||
test_cfg (dict): Config for testing. Default: None. | ||
pretrained (str): Path for pretrained model. Default: None. | ||
""" | ||
|
||
def __init__(self, | ||
generator, | ||
pixel_loss=None, | ||
align_loss=None, | ||
train_cfg=None, | ||
test_cfg=None, | ||
pretrained=None): | ||
super(BasicRestorer, self).__init__() | ||
|
||
self.train_cfg = train_cfg | ||
self.test_cfg = test_cfg | ||
|
||
# model | ||
self.generator = build_backbone(generator) | ||
self.img_normalize = ImgNormalize( | ||
pixel_range=1, | ||
img_mean=(129.795, 108.12, 96.39), | ||
img_std=(255, 255, 255)) | ||
self.img_denormalize = ImgNormalize( | ||
pixel_range=1, | ||
img_mean=(0.509, 0.424, 0.378), | ||
img_std=(1., 1., 1.), | ||
sign=1) | ||
|
||
# loss | ||
self.pixel_loss = build_loss(pixel_loss) if pixel_loss else None | ||
self.align_loss = build_loss(align_loss) if align_loss else None | ||
|
||
# pretrained | ||
if pretrained: | ||
self.init_weights(pretrained) | ||
|
||
def forward(self, lq, gt=None, test_mode=False, **kwargs): | ||
"""Forward function. | ||
Args: | ||
lq (Tensor): Input lq images. | ||
gt (Tensor): Ground-truth image. Default: None. | ||
test_mode (bool): Whether in test mode or not. Default: False. | ||
kwargs (dict): Other arguments. | ||
""" | ||
|
||
if test_mode: | ||
return self.forward_test(lq, gt=gt, **kwargs) | ||
|
||
return self.generator.forward(lq) | ||
|
||
def train_step(self, data_batch, optimizer): | ||
"""Train step. | ||
Args: | ||
data_batch (dict): A batch of data, which requires | ||
'lq', 'gt' | ||
optimizer (obj): Optimizer. | ||
Returns: | ||
dict: Returned output, which includes: | ||
log_vars, num_samples, results (lq, gt and pred). | ||
""" | ||
# data | ||
lq = data_batch['lq'] | ||
gt = data_batch['gt'] | ||
gt_heatmap = data_batch['heatmap'] | ||
|
||
# generate | ||
sr_list, heatmap_list = self.generator.forward(lq) | ||
|
||
# loss | ||
losses = OrderedDict() | ||
|
||
loss_pix = 0.0 | ||
loss_align = 0.0 | ||
for step, (sr, heatmap) in enumerate(zip(sr_list, heatmap_list)): | ||
losses[f'loss_pixel_v{step}'] = self.pixel_loss(sr, gt) | ||
loss_pix += losses[f'loss_pixel_v{step}'] | ||
losses[f'loss_align_v{step}'] = self.pixel_loss( | ||
heatmap, gt_heatmap) | ||
loss_align += losses[f'loss_align_v{step}'] | ||
|
||
# parse loss | ||
loss, log_vars = self.parse_losses(losses) | ||
|
||
# optimize | ||
optimizer['generator'].zero_grad() | ||
loss.backward() | ||
optimizer['generator'].step() | ||
|
||
log_vars.pop('loss') # remove the unnecessary 'loss' | ||
outputs = dict( | ||
log_vars=log_vars, | ||
num_samples=len(gt.data), | ||
results=dict(lq=lq.cpu(), gt=gt.cpu(), output=sr_list[-1].cpu())) | ||
|
||
return outputs | ||
|
||
def forward_test(self, | ||
lq, | ||
gt=None, | ||
meta=None, | ||
save_image=False, | ||
save_path=None, | ||
iteration=None): | ||
"""Testing forward function. | ||
Args: | ||
lq (Tensor): LQ image. | ||
gt (Tensor): GT image. | ||
meta (list[dict]): Meta data, such as path of GT file. | ||
Default: None. | ||
save_image (bool): Whether to save image. Default: False. | ||
save_path (str): Path to save image. Default: None. | ||
iteration (int): Iteration for the saving image name. | ||
Default: None. | ||
Returns: | ||
dict: Output results, which contain either key(s) | ||
1. 'eval_result'. | ||
2. 'lq', 'pred'. | ||
3. 'lq', 'pred', 'gt'. | ||
""" | ||
|
||
# generator | ||
with torch.no_grad(): | ||
sr_list, _ = self.generator.forward(lq) | ||
pred = sr_list[3] | ||
pred = self.img_denormalize(pred) | ||
|
||
if gt is not None: | ||
gt = self.img_denormalize(gt) | ||
|
||
if self.test_cfg is not None and self.test_cfg.get('metrics', None): | ||
assert gt is not None, ( | ||
'evaluation with metrics must have gt images.') | ||
results = dict(eval_result=self.evaluate(pred, gt)) | ||
else: | ||
results = dict(lq=lq.cpu(), output=pred.cpu()) | ||
if gt is not None: | ||
results['gt'] = gt.cpu() | ||
|
||
# save image | ||
if save_image: | ||
if 'gt_path' in meta[0]: | ||
the_path = meta[0]['gt_path'] | ||
else: | ||
the_path = meta[0]['lq_path'] | ||
folder_name = osp.splitext(osp.basename(the_path))[0] | ||
if isinstance(iteration, numbers.Number): | ||
save_path = osp.join(save_path, folder_name, | ||
f'{folder_name}-{iteration + 1:06d}.png') | ||
elif iteration is None: | ||
save_path = osp.join(save_path, f'{folder_name}.png') | ||
else: | ||
raise ValueError('iteration should be number or None, ' | ||
f'but got {type(iteration)}') | ||
mmcv.imwrite(tensor2img(pred), save_path) | ||
|
||
return results | ||
|
||
def val_step(self, data_batch, **kwargs): | ||
"""Validation step. | ||
Args: | ||
data_batch (dict): A batch of data. | ||
kwargs (dict): Other arguments for ``val_step``. | ||
Returns: | ||
dict: Returned output. | ||
""" | ||
output = self.forward_test(**data_batch, **kwargs) | ||
return output |