-
Notifications
You must be signed in to change notification settings - Fork 431
/
math.py
1064 lines (903 loc) · 48 KB
/
math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-License-Identifier: Apache-2.0
"""
math
"""
import logging
import numpy as np
from onnx import onnx_pb
from tf2onnx import constants, utils
from tf2onnx.handler import tf_op
from tf2onnx.onnx_opset import common
from tf2onnx.graph_builder import GraphBuilder
logger = logging.getLogger(__name__)
# pylint: disable=unused-argument,missing-docstring
@tf_op(["Add", "AddV2", "Div", "Mul", "Sub"])
class BroadcastOp(common.BroadcastOp):
pass
@tf_op(["RealDiv", "TruncateDiv"], onnx_op="Div")
class RealDiv(common.BroadcastOp):
pass
@tf_op(["LeakyRelu", "Softplus", "Softsign"])
class DirectOpSinceOpset1:
@classmethod
def version_1(cls, ctx, node, **kwargs):
pass
@tf_op(["Abs", "Ceil", "Elu", "Exp", "Floor", "Log", "Neg", "Relu", "Sigmoid", "Sqrt",
"Tanh", "Reciprocal"])
class DirectOp:
@classmethod
def version_1(cls, ctx, node, **kwargs):
pass
@classmethod
def version_6(cls, ctx, node, **kwargs):
if node.type == "Log":
# ORT doesn't implement Log on doubles
double_to_float = {onnx_pb.TensorProto.DOUBLE: onnx_pb.TensorProto.FLOAT}
dtypes = node.output_dtypes
if node.maybe_cast_input([[onnx_pb.TensorProto.FLOAT]], double_to_float):
cast_back_node = ctx.insert_new_node_on_output(
"Cast", node.output[0], name=utils.make_name(node.name + "_castback"),
to=dtypes[0])
ctx.set_dtype(cast_back_node.output[0], dtypes[0])
ctx.copy_shape(node.name, cast_back_node.output[0])
ctx.copy_dtype(node.input[0], node.output[0])
@tf_op(["Acos", "Asin", "Atan", "Cos", "Sin", "Tan"])
class TrigOpSinceOpset7:
@classmethod
def version_7(cls, ctx, node, **kwargs):
pass
@tf_op(["Acosh", "Asinh", "Atanh", "Cosh", "Sinh"])
class TrigOpSinceOpset9:
@classmethod
def version_9(cls, ctx, node, **kwargs):
pass
@tf_op(["Prelu"], onnx_op="PRelu")
class Prelu:
@classmethod
def version_1(cls, ctx, node, **kwargs):
pass
def make_min_or_max_op(ctx, op_type, inputs, outputs,
output_shapes=None, output_dtypes=None):
# support more dtype
supported_dtypes = [
onnx_pb.TensorProto.FLOAT,
onnx_pb.TensorProto.FLOAT16,
onnx_pb.TensorProto.DOUBLE
]
target_dtype = onnx_pb.TensorProto.FLOAT
need_cast = False
cast_inputs = []
for inp in inputs:
dtype = ctx.get_dtype(inp)
utils.make_sure(dtype is not None, "dtype of {} is None".format(inp))
if dtype not in supported_dtypes:
cast_inp = ctx.make_node("Cast", [inp], attr={"to": target_dtype})
cast_inputs.append(cast_inp.output[0])
need_cast = True
else:
cast_inputs.append(inp)
node = ctx.make_node(op_type, cast_inputs, shapes=output_shapes)
actual_outputs = node.output
if need_cast:
origin_dtype = ctx.get_dtype(inputs[0])
if output_dtypes is not None:
origin_dtype = output_dtypes[0]
ctx.set_dtype(node.output[0], target_dtype)
cast_name = utils.make_name(node.name)
cast_node = ctx.insert_new_node_on_output("Cast", node.output[0], name=cast_name, to=origin_dtype)
ctx.set_dtype(cast_node.output[0], origin_dtype)
ctx.copy_shape(node.output[0], cast_node.output[0])
actual_outputs = cast_node.output
final_node = ctx.make_node("Identity", actual_outputs, outputs=outputs,
shapes=output_shapes, dtypes=output_dtypes)
# tensorflow minimum/maximum does support broadcast, onnx < opset 8 does not.
# handle this by doing something like:
# y = min(x1, add(x2, sub(x1, x1))), where x1, x2 are the inputs and x2 is a scalar
# this will create a tensor of zeros of the shape of x1, adds x2 to it (which broadcasts) and use that for min.
shapeo = ctx.get_shape(node.output[0])
needs_broadcast_op = []
has_correct_shape = []
if ctx.opset < 8:
for i, input_name in enumerate(node.input):
if ctx.get_shape(input_name) != shapeo:
needs_broadcast_op.append(i)
else:
has_correct_shape.append(input_name)
if needs_broadcast_op:
has_correct_shape = has_correct_shape[0]
for i in needs_broadcast_op:
input_node = node.inputs[i]
# get a tensor with zeros (since there is no Fill op as of opset8)
sub_node = ctx.make_node("Sub", [has_correct_shape, has_correct_shape],
op_name_scope=input_node.name)
# use add as 'broadcast' op
add_node = ctx.make_node("Add", [input_node.output[0], sub_node.output[0]],
op_name_scope=input_node.name)
ctx.replace_input(node, node.input[i], add_node.output[0], i)
return final_node
@tf_op("Minimum", onnx_op="Min")
@tf_op("Maximum", onnx_op="Max")
class MinMaxOp:
@classmethod
def version_1(cls, ctx, node, **kwargs):
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.remove_node(node.name)
make_min_or_max_op(ctx, node.type, node.input, node.output, shapes, dtypes)
@classmethod
def version_12(cls, ctx, node, **kwargs):
pass # support all numeric types and broadcasting
@tf_op("ClipByValue")
class ClipByValueOp:
# in tf-1.8 there was a ClipByValue op which in later versions was replaced by max(min(x, a), b)
# To support models generated with tf-1.8 rewrite the tf ClipByValue op to max(min(x, a), b)
@classmethod
def version_8(cls, ctx, node, **kwargs):
supported = [onnx_pb.TensorProto.FLOAT16, onnx_pb.TensorProto.FLOAT, onnx_pb.TensorProto.DOUBLE]
# fetch those upfront since they are not accessible once we remove 'node'
shapes = node.output_shapes
dtypes = node.output_dtypes
input_dtype = ctx.get_dtype(node.input[0])
name = node.name
min_node = node.input[1]
if ctx.get_dtype(min_node) not in supported:
# cast min if needed
min_node = ctx.insert_new_node_on_input(node, "Cast", min_node, to=onnx_pb.TensorProto.FLOAT).output[0]
max_node = node.input[2]
if ctx.get_dtype(max_node) not in supported:
# cast max if needed
max_node = ctx.insert_new_node_on_input(node, "Cast", max_node, to=onnx_pb.TensorProto.FLOAT).output[0]
ctx.remove_node(name)
new_node = ctx.make_node("Max", [node.input[0], min_node], outputs=[node.output[0]],
shapes=shapes, dtypes=dtypes)
if input_dtype not in supported:
# cast the data tensor if needed
ctx.insert_new_node_on_input(new_node, "Cast", new_node.input[0], to=onnx_pb.TensorProto.FLOAT)
new_node = ctx.insert_new_node_on_output("Min", new_node.output[0], name=utils.make_name(name))
new_node.input.append(max_node)
# copy shape and type
ctx.set_dtype(new_node.output[0], dtypes[0])
ctx.set_shape(new_node.output[0], shapes[0])
if dtypes[0] not in supported:
# cast output if needed
new_node = ctx.insert_new_node_on_output("Cast", new_node.output[0],
name=utils.make_name(name), to=dtypes[0])
# copy shape and type
ctx.set_dtype(new_node.output[0], dtypes[0])
ctx.set_shape(new_node.output[0], shapes[0])
@classmethod
def version_12(cls, ctx, node, **kwargs):
node.type = 'Clip' # clip supports all types now
@tf_op(["LogSoftmax", "Softmax"])
class Softmax:
@classmethod
def version_1(cls, ctx, node, **kwargs):
# T output = Softmax(T logits). The axis softmax would be performed on is always on -1.
# T output = Softmax(T input, @int axis). Default axis is 1.
axis = node.get_attr_value("axis")
if axis is None:
# by default use the last dim
axis = len(ctx.get_shape(node.input[0])) - 1
node.set_attr("axis", axis)
@classmethod
def version_11(cls, ctx, node, **kwargs):
cls.version_1(ctx, node, **kwargs)
@classmethod
def version_13(cls, ctx, node, **kwargs):
# Default axis is now -1.
pass
@tf_op("Square")
class Square:
@classmethod
def version_1(cls, ctx, node, **kwargs):
node.type = "Mul"
node.input.append(node.input[0])
@tf_op("Relu6")
class Relu6:
@classmethod
def version_1(cls, ctx, node, **kwargs):
# relu6 = min(max(features, 0), 6)
# relu6 = min(max(features, 0), 6)
node.type = "Clip"
node.set_attr("min", 0.0)
node.set_attr("max", 6.0)
@classmethod
def version_11(cls, ctx, node, **kwargs):
# add min and max as inputs
node.type = "Clip"
onnx_dtype = ctx.get_dtype(node.input[0])
np_dtype = utils.ONNX_TO_NUMPY_DTYPE[onnx_dtype]
clip_min = ctx.make_const(utils.make_name("{}_min".format(node.name)), np.array(0.0, dtype=np_dtype))
clip_max = ctx.make_const(utils.make_name("{}_max".format(node.name)), np.array(6.0, dtype=np_dtype))
node.input.append(clip_min.output[0])
node.input.append(clip_max.output[0])
@tf_op("Rsqrt")
class Rsqrt:
@classmethod
def version_1(cls, ctx, node, **kwargs):
node.type = "Sqrt"
op_name = utils.make_name(node.name)
reciprocal = ctx.insert_new_node_on_output("Reciprocal", node.output[0], name=op_name)
ctx.copy_shape(node.output[0], reciprocal.output[0])
@tf_op("SquaredDifference")
class SquaredDifference:
@classmethod
def version_1(cls, ctx, node, **kwargs):
node.type = "Sub"
op_name = utils.make_name(node.name)
node_out = node.output[0]
ctx.insert_new_node_on_output("Mul", node_out, inputs=[node_out, node_out], name=op_name)
@tf_op("Sign")
class Sign:
@classmethod
def version_1(cls, ctx, node, **kwargs):
"""Sign op."""
# T sign = Sign(T Input)
node_dtype = ctx.get_dtype(node.output[0])
utils.make_sure(node_dtype, "Dtype of {} is None".format(node.name))
if node_dtype in [onnx_pb.TensorProto.COMPLEX64, onnx_pb.TensorProto.COMPLEX128]:
raise ValueError("dtype " + str(node_dtype) + " is not supported in onnx for now")
zero_name = utils.make_name("{}_zero".format(node.name))
ctx.make_const(zero_name, np.array(0, dtype=np.float32))
if node_dtype not in [onnx_pb.TensorProto.FLOAT16, onnx_pb.TensorProto.FLOAT, onnx_pb.TensorProto.DOUBLE]:
cast_node_0 = ctx.make_node("Cast", [node.input[0]], {"to": onnx_pb.TensorProto.FLOAT})
greater_node = ctx.make_node("Greater", [cast_node_0.output[0], zero_name])
less_node = ctx.make_node("Less", [cast_node_0.output[0], zero_name])
else:
greater_node = ctx.make_node("Greater", [node.input[0], zero_name])
less_node = ctx.make_node("Less", [node.input[0], zero_name])
cast_node_1 = ctx.make_node("Cast", [greater_node.output[0]], {"to": node_dtype})
cast_node_2 = ctx.make_node("Cast", [less_node.output[0]], {"to": node_dtype})
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.remove_node(node.name)
ctx.make_node("Sub", [cast_node_1.output[0], cast_node_2.output[0]], outputs=[node.output[0]],
shapes=shapes, dtypes=dtypes)
@classmethod
def version_9(cls, ctx, node, **kwargs):
node_dtype = ctx.get_dtype(node.output[0])
utils.make_sure(node_dtype, "dtype of {} is None".format(node.name))
if node_dtype in [onnx_pb.TensorProto.BOOL, onnx_pb.TensorProto.COMPLEX64, onnx_pb.TensorProto.COMPLEX128]:
raise ValueError("dtype " + str(node_dtype) + " is not supported in onnx for now")
@tf_op("Pow")
class Pow:
@classmethod
def version_1(cls, ctx, node, **kwargs):
if ctx.is_target(constants.TARGET_CAFFE2):
# workaround a bug in caffe2 pre Feb2018, pow(a, b) becomes np.exp(np.log(a) * b)
node.type = "Log"
b = node.input[1]
ctx.remove_input(node, node.input[1], 1)
op_name = utils.make_name(node.name)
mul_op = ctx.insert_new_node_on_output("Mul", node.output[0], name=op_name)
mul_op.input.append(b)
op_name = utils.make_name(node.name)
exp_op = ctx.insert_new_node_on_output("Exp", mul_op.output[0], name=op_name)
ctx.copy_shape(node.output[0], exp_op.output[0])
BroadcastOp.version_1(ctx, mul_op, **kwargs)
@classmethod
def version_7(cls, ctx, node, **kwargs):
pass
@tf_op("DivNoNan")
class DivNoNan:
@classmethod
def version_9(cls, ctx, node, **kwargs):
node.type = "Div"
np_dtype = utils.map_onnx_to_numpy_type(ctx.get_dtype(node.input[1]))
zero_const = ctx.make_const(utils.make_name("const_zero"), np.array(0, np_dtype)).output[0]
is_zero = ctx.make_node("Equal", [node.input[1], zero_const]).output[0]
where_node = ctx.make_node("Where", [is_zero, zero_const, node.output[0]])
ctx.insert_node_on_output(where_node, node.output[0])
@tf_op("LRN")
class LRN:
@classmethod
def version_1(cls, ctx, node, **kwargs):
# ONNX: Each input value is divided by (bias+(alpha/size)*sum(xi^2 for every xi in the local region))^beta
# TF: sqr_sum[a, b, c, d] = sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
# output = input / (bias + alpha * sqr_sum) ** beta
# by default, depth_radius is 5 in tensorflow
size = node.get_attr_value("depth_radius", 5) * 2 + 1
node.set_attr("size", size)
node.set_attr("alpha", size * node.get_attr("alpha").f)
shapes = node.output_shapes[0]
dtypes = node.output_dtypes[0]
ctx.insert_new_node_on_input(node, "Transpose", node.input[0], perm=constants.NHWC_TO_NCHW)
ctx.update_node_shape_dtype(node, override=True)
op_name = utils.make_name(node.name)
ctx.insert_new_node_on_output("Transpose", node.output[0], perm=constants.NCHW_TO_NHWC,
name=op_name, shapes=shapes, dtypes=dtypes)
@tf_op(["MatMul", "BatchMatMul", "BatchMatMulV2", "BatchMatMulV3"])
class MatMul:
@classmethod
def version_1(cls, ctx, node, **kwargs):
# tensorflow allows transpose and conjugated. If found, insert the required transpose.
# We could use Gemm as well but tensorflow does not pass bias in matmul.
if node.type != "MatMulInteger": node.type = "MatMul"
attrs = ["transpose_a", "transpose_b", "adjoint_a", "adjoint_b", "adj_x", "adj_y"]
attrs_val = [node.get_attr(attr) for attr in attrs]
attrs_val = [0 if val is None else val.i for val in attrs_val]
dtype = ctx.get_dtype(node.output[0])
if any(attrs_val[2:]):
# conjugation operation on complex data not supported in onnx for now
# so if it's complex than raise exception
if dtype not in [onnx_pb.TensorProto.FLOAT, onnx_pb.TensorProto.FLOAT16, onnx_pb.TensorProto.DOUBLE]:
raise ValueError("dtype " + dtype + " is not supported in onnx matmul for now")
transpose_a = (attrs_val[0] + attrs_val[2] + attrs_val[4]) % 2
transpose_b = (attrs_val[1] + attrs_val[3] + attrs_val[5]) % 2
if transpose_a != 0:
shape = ctx.get_shape(node.input[0])
if shape:
perm = list(range(0, len(shape)))
tmp = perm[-1]
perm[-1] = perm[-2]
perm[-2] = tmp
ctx.insert_new_node_on_input(node, "Transpose", node.input[0], input_index=0, perm=perm)
if transpose_b != 0:
shape = ctx.get_shape(node.input[1])
if shape:
perm = list(range(0, len(shape)))
tmp = perm[-1]
perm[-1] = perm[-2]
perm[-2] = tmp
ctx.insert_new_node_on_input(node, "Transpose", node.input[1], input_index=1, perm=perm)
unsupported = ["a_is_sparse", "b_is_sparse"]
for i in unsupported:
val = node.get_attr(i)
if val is not None and val.i != 0:
raise ValueError(node.type + " attribute " + i + " is not supported")
@classmethod
def version_10(cls, ctx, node, **kwargs):
if (ctx.get_dtype(node.input[0]) in [onnx_pb.TensorProto.INT8, onnx_pb.TensorProto.UINT8] and
ctx.get_dtype(node.input[1]) in [onnx_pb.TensorProto.INT8, onnx_pb.TensorProto.UINT8] and
ctx.get_dtype(node.output[0]) == onnx_pb.TensorProto.INT32):
node.type = "MatMulInteger"
zpdata_a = np.zeros(1, dtype=utils.map_onnx_to_numpy_type(ctx.get_dtype(node.input[0])))
zero_point_node_a = ctx.make_const(utils.make_name("zero_point_a"), zpdata_a)
zpdata_b = np.zeros(1, dtype=utils.map_onnx_to_numpy_type(ctx.get_dtype(node.input[1])))
zero_point_node_b = ctx.make_const(utils.make_name("zero_point_b"), zpdata_b)
ctx.replace_inputs(node, [node.input[0], node.input[1],
zero_point_node_a.output[0], zero_point_node_b.output[0]])
cls.version_1(ctx, node, **kwargs)
@tf_op("Erf")
class Erf:
@classmethod
def version_1(cls, ctx, node, **kwargs):
"""Error function."""
# constant names
a1 = "erf_a1"
a2 = "erf_a2"
a3 = "erf_a3"
a4 = "erf_a4"
a5 = "erf_a5"
p = "erf_p"
one = "erf_one"
null = "erf_null"
n = node.name
output_name = node.output[0]
erf_a1_node = ctx.get_node_by_output("erf_a1")
if erf_a1_node is None:
# insert the constants for erf once
ctx.make_const(a1, np.array(0.254829592, dtype=np.float32))
ctx.make_const(a2, np.array(-0.284496736, dtype=np.float32))
ctx.make_const(a3, np.array(1.421413741, dtype=np.float32))
ctx.make_const(a4, np.array(-1.453152027, dtype=np.float32))
ctx.make_const(a5, np.array(1.061405429, dtype=np.float32))
ctx.make_const(p, np.array(0.3275911, dtype=np.float32))
ctx.make_const(one, np.array(1., dtype=np.float32))
ctx.make_const(null, np.array(0., dtype=np.float32))
x = node.input[0]
# erf(x):
# sign = 1 if x >= 0 else -1
# x = abs(x)
# # A&S formula 7.1.26
# t = 1.0 / (1.0 + p * x)
# y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * math.exp(-x * x)
# return sign * y # erf(-x) = -erf(x)
x_node = ctx.make_node("Abs", [x], op_name_scope=node.name, name="x")
negx_node = ctx.make_node("Sub", [null, x], op_name_scope=node.name, name="negx")
is_positive_node = ctx.make_node("Greater", [x, null], op_name_scope=node.name, name="isPositive")
is_positive_value_node = ctx.make_node("Cast", is_positive_node.output, op_name_scope=node.name,
name="isPositiveValue", attr={"to": onnx_pb.TensorProto.FLOAT})
is_neg_node = ctx.make_node("Less", [x, null], op_name_scope=node.name, name="isNeg")
ig_neg_value_node = ctx.make_node("Cast", is_neg_node.output, op_name_scope=node.name, name="isNegValue",
attr={"to": onnx_pb.TensorProto.FLOAT})
sign0_node = ctx.make_node("Sub", [is_positive_value_node.output[0], ig_neg_value_node.output[0]],
op_name_scope=node.name, name="sign0")
sign_add_one_node = ctx.make_node("Add", [sign0_node.output[0], one], op_name_scope=node.name,
name="signAddOne")
non_zero_node = ctx.make_node("Abs", sign0_node.output, op_name_scope=node.name, name="nonZero")
sign_node = ctx.make_node("Sub", [sign_add_one_node.output[0], non_zero_node.output[0]],
op_name_scope=node.name, name="sign")
num_4_node = ctx.make_node("Mul", [x_node.output[0], p], op_name_scope=node.name, name="4")
num_5_node = ctx.make_node("Add", [num_4_node.output[0], one], op_name_scope=node.name, name="5")
t_node = ctx.make_node("Div", [one, num_5_node.output[0]], op_name_scope=node.name, name="t")
xsq_node = ctx.make_node("Mul", [x, negx_node.output[0]], op_name_scope=node.name, name="xsq")
num_6_node = ctx.make_node("Exp", xsq_node.output, op_name_scope=node.name, name="6")
num_7_node = ctx.make_node("Mul", [num_6_node.output[0], t_node.output[0]], op_name_scope=node.name, name="7")
num_8_node = ctx.make_node("Mul", [t_node.output[0], a5], op_name_scope=node.name, name="8")
num_9_node = ctx.make_node("Add", [num_8_node.output[0], a4], op_name_scope=node.name, name="9")
num_10_node = ctx.make_node("Mul", [num_9_node.output[0], t_node.output[0]], op_name_scope=node.name, name="10")
num_11_node = ctx.make_node("Add", [num_10_node.output[0], a3], op_name_scope=node.name, name="11")
num_12_node = ctx.make_node("Mul", [num_11_node.output[0], t_node.output[0]], op_name_scope=node.name,
name="12")
num_13_node = ctx.make_node("Add", [num_12_node.output[0], a2], op_name_scope=node.name, name="13")
num_14_node = ctx.make_node("Mul", [num_13_node.output[0], t_node.output[0]], op_name_scope=node.name,
name="14")
num_15_node = ctx.make_node("Add", [num_14_node.output[0], a1], op_name_scope=node.name, name="15")
num_16_node = ctx.make_node("Mul", [num_15_node.output[0], num_7_node.output[0]], op_name_scope=node.name,
name="16")
num_17_node = ctx.make_node("Sub", [one, num_16_node.output[0]], op_name_scope=node.name, name="17")
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.remove_node(node.name)
ctx.make_node("Mul", [num_17_node.output[0], sign_node.output[0]], outputs=[output_name], name=n,
shapes=shapes, dtypes=dtypes)
@classmethod
def version_9(cls, ctx, node, **kwargs):
pass
@tf_op("FloorDiv")
class FloorDiv:
@classmethod
def version_6(cls, ctx, node, **kwargs):
# T output = FloorDiv(T x, T y)
node.type = "Div"
dtype = ctx.get_dtype(node.input[0])
if dtype in [onnx_pb.TensorProto.FLOAT, onnx_pb.TensorProto.FLOAT16, onnx_pb.TensorProto.DOUBLE]:
new_node_name = utils.make_name("floor_div_res")
floor_res = ctx.insert_new_node_on_output(op_type="Floor", output_name=node.output[0],
name=new_node_name)
ctx.copy_dtype(node.output[0], floor_res.output[0])
ctx.copy_shape(node.output[0], floor_res.output[0])
@tf_op("FloorMod")
class FloorMod:
@classmethod
def version_7(cls, ctx, node, **kwargs):
# T output = FloorMod(T x, T y)
div = ctx.make_node(op_type="Div", inputs=node.input)
dtype = ctx.get_dtype(node.input[0])
if dtype in [onnx_pb.TensorProto.FLOAT, onnx_pb.TensorProto.FLOAT16, onnx_pb.TensorProto.DOUBLE]:
div = ctx.make_node(op_type="Floor", inputs=div.output)
mul = ctx.make_node(op_type="Mul", inputs=[div.output[0], node.input[1]])
# res node will take over shape&dtype&output connection info of original "node"
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.remove_node(node.name)
ctx.make_node(op_type="Sub", inputs=[node.input[0], mul.output[0]],
name=node.name, outputs=node.output, shapes=shapes, dtypes=dtypes)
@tf_op("Selu")
class Selu:
@classmethod
def version_1(cls, ctx, node, **kwargs):
pass
@tf_op("Cumsum", onnx_op="CumSum")
class CumSum:
@classmethod
def version_11(cls, ctx, node, **kwargs):
pass
@tf_op("Cumprod")
class CumProd:
@classmethod
def version_10(cls, ctx, node, **kwargs):
# opset 10 required for Slice to support starts/ends/axes/steps as inputs
axis_node = node.inputs[1]
is_axis_const = axis_node.is_const()
if is_axis_const: # we can compute axis value right now
axis = axis_node.get_tensor_value()
axis_node = ctx.make_const(utils.make_name("axis"), np.array([axis], dtype=np.int64))
else:
axis_node = ctx.make_node("Cast", inputs=[axis_node.output[0]], attr={"to": onnx_pb.TensorProto.INT64},
op_name_scope=node.name, outputs=[utils.make_name("axis")])
axis_node = GraphBuilder(ctx).make_unsqueeze({'data': axis_node.output[0], 'axes': [0]}, return_node=True)
axis = axis_node.output[0]
input_rank = len(ctx.get_shape(node.input[0]))
cond_true_node = ctx.make_const(utils.make_name("cond_in"), np.ones((), dtype=bool))
input_shape_node = ctx.make_node("Shape", inputs=[node.input[0]], op_name_scope=node.name,
outputs=[utils.make_name("input_shape")])
axis_length_node = ctx.make_node("Gather", inputs=[input_shape_node.output[0], node.input[1]],
op_name_scope=node.name, outputs=[utils.make_name("axis_length")])
one_node = ctx.make_const(utils.make_name("one"), np.array([1], "int64"))
axis_length_plus_one_node = ctx.make_node("Add", inputs=[axis_length_node.output[0], one_node.output[0]],
op_name_scope=node.name,
outputs=[utils.make_name("axis_length_plus_one")])
num_iter_node = ctx.make_node("Sub", inputs=[axis_length_node.output[0], one_node.output[0]],
op_name_scope=node.name, outputs=[utils.make_name("num_iter")])
if node.get_attr_value("exclusive"): # one iter less, crop the input, then pad the output
num_iter_node = ctx.make_node("Sub", inputs=[num_iter_node.output[0], one_node.output[0]],
op_name_scope=node.name, outputs=[utils.make_name("num_iter")])
zero_node = ctx.make_const(utils.make_name("zero"), np.array([0], "int64"))
if node.get_attr_value("reverse"):
pad_axis = [0, 1]
start_slice = one_node.output[0]
end_slice = axis_length_plus_one_node.output[0]
else:
minus_one_node = ctx.make_const(utils.make_name("minus_one"), np.array([-1], "int64"))
pad_axis = [1, 0]
start_slice = zero_node.output[0]
end_slice = minus_one_node.output[0]
pads_node = cls.get_pads_node(ctx, pad_axis, axis, input_rank, node.name)
slice_shape = [-1] * len(ctx.get_shape(node.input[0]))
inputs_node = ctx.make_node("Slice", inputs=[node.input[0], start_slice, end_slice, axis_node.output[0]],
op_name_scope=node.name, outputs=[utils.make_name("slice")],
shapes=[slice_shape], dtypes=[ctx.get_dtype(node.input[0])])
inputs = inputs_node.output[0]
else:
inputs = node.input[0]
loop_graph = cls.make_loop_graph(ctx, node, inputs, input_rank, axis)
loop_graph.parent_graph = ctx
loop_inputs = [num_iter_node.output[0], cond_true_node.output[0], inputs,
axis_length_plus_one_node.output[0], inputs]
loop_outputs = [utils.make_name("loop_inputs_out"), utils.make_name("loop_axis_length_plus_one_out"),
utils.make_name("loop_accumulator_out")]
if not is_axis_const: # axis is a tensor, we neeed to feed it to the loop graph
loop_inputs.append(axis)
loop_outputs.append(utils.make_name("loop_axis_out"))
loop_outputs_shapes = [loop_graph.get_shape(o) for o in loop_graph.outputs[1:]]
loop_outputs_dtypes = [loop_graph.get_dtype(o) for o in loop_graph.outputs[1:]]
loop_node = ctx.make_node("Loop", inputs=loop_inputs, branches={"body": loop_graph}, outputs=loop_outputs,
shapes=loop_outputs_shapes, dtypes=loop_outputs_dtypes, op_name_scope=node.name)
if node.get_attr_value("exclusive"): # pad the output
if ctx.get_dtype(loop_node.output[2]) != ctx.get_dtype(one_node.output[0]):
pad_const_node = ctx.make_node("Cast", inputs=[one_node.output[0]],
attr={"to": ctx.get_dtype(loop_node.output[2])},
op_name_scope=node.name, outputs=[utils.make_name("pad_const")])
else:
pad_const_node = one_node
output_node = ctx.make_node("Pad", op_name_scope=node.name, outputs=[utils.make_name("cumprod_out")],
inputs=[loop_node.output[2], pads_node.output[0], pad_const_node.output[0]])
output = output_node.output[0]
else:
output = loop_node.output[2]
output_node = ctx.make_node("Identity", inputs=[output], outputs=[utils.make_name("cumprod_out")],
shapes=[ctx.get_shape(node.input[0])], dtypes=[ctx.get_dtype(node.input[0])])
ctx.insert_node_on_output(output_node, node.output[0])
ctx.remove_node(node.name)
@classmethod
def make_loop_graph(cls, ctx, node, inputs_tensor, input_rank, axis):
inputs_tensor_shape = ctx.get_shape(inputs_tensor)
inputs_tensor_dtype = ctx.get_dtype(inputs_tensor)
graph = ctx.create_new_graph_with_same_config()
graph.add_graph_input(utils.make_name("iteration_num"), onnx_pb.TensorProto.INT64, [])
graph.add_graph_input(utils.make_name("condition_in"), onnx_pb.TensorProto.BOOL, [])
graph.add_graph_input(utils.make_name("inputs"), inputs_tensor_dtype, inputs_tensor_shape)
graph.add_graph_input(utils.make_name("axis_length_plus_one"), onnx_pb.TensorProto.INT64, [1])
graph.add_graph_input(utils.make_name("accumulator"), inputs_tensor_dtype, inputs_tensor_shape)
if not isinstance(axis, int): # axis is a tensor, we need to feed it to the loop graph
graph.add_graph_input(utils.make_name("axis"), onnx_pb.TensorProto.INT64, [1])
axis = graph.input_names[-1]
axis_node = graph.get_node_by_output(axis)
else:
axis_node = graph.make_const(utils.make_name("axis"), np.array([axis], "int64"))
# main loop graph
loop_name = node.name + "/loop"
iter_num = GraphBuilder(graph).make_unsqueeze({'data': graph.input_names[0], 'axes': [0]})
one_node = graph.make_const(utils.make_name("one"), np.array(1, "int64"))
zero_node = graph.make_const(utils.make_name("zero"), np.array([0], "int64"))
add_node = graph.make_node("Add", inputs=[iter_num, one_node.output[0]],
outputs=[utils.make_name("add")], op_name_scope=loop_name)
if node.get_attr_value("reverse"):
pad_axis = [zero_node.output[0], add_node.output[0]]
start_slice = add_node.output[0]
end_slice = graph.input_names[3]
else:
neg_node = graph.make_node("Neg", inputs=[add_node.output[0]],
outputs=[utils.make_name("neg")], op_name_scope=loop_name)
pad_axis = [add_node.output[0], zero_node.output[0]]
start_slice = zero_node.output[0]
end_slice = neg_node.output[0]
pads_node = cls.get_pads_node(graph, pad_axis, axis, input_rank, is_pad_axis_const=False, base_name=loop_name)
slice_node = graph.make_node("Slice", op_name_scope=loop_name, outputs=[utils.make_name("slice")],
inputs=[graph.input_names[2], start_slice, end_slice, axis_node.output[0]])
if graph.get_dtype(slice_node.output[0]) != graph.get_dtype(one_node.output[0]):
pad_const_node = graph.make_node("Cast", inputs=[one_node.output[0]],
attr={"to": graph.get_dtype(slice_node.output[0])},
op_name_scope=loop_name, outputs=[utils.make_name("pad_const")])
else:
pad_const_node = one_node
pad_node = graph.make_node("Pad", inputs=[slice_node.output[0], pads_node.output[0], pad_const_node.output[0]],
op_name_scope=loop_name, outputs=[utils.make_name("pad")])
mul_node = graph.make_node("Mul", inputs=[graph.input_names[4], pad_node.output[0]],
op_name_scope=loop_name, outputs=[utils.make_name("mul")],
shapes=[inputs_tensor_shape], dtypes=[inputs_tensor_dtype])
# manage loop outputs
output_cond_node = graph.make_node("Identity", inputs=[graph.input_names[1]], op_name_scope=loop_name,
outputs=[utils.make_name("condition_out")])
output_inp_node = graph.make_node("Identity", inputs=[graph.input_names[2]], op_name_scope=loop_name,
outputs=[utils.make_name("inputs_out")])
output_axis_length_plus_one_node = graph.make_node("Identity", inputs=[graph.input_names[3]],
op_name_scope=loop_name,
outputs=[utils.make_name("axis_length_plus_one_out")])
output_acc_node = graph.make_node("Identity", inputs=[mul_node.output[0]], op_name_scope=loop_name,
outputs=[utils.make_name("accumulator_out")])
graph.add_graph_output(output_cond_node.output[0]) # 1 condition output
graph.add_graph_output(output_inp_node.output[0]) # N loop carried dependencies outputs
graph.add_graph_output(output_axis_length_plus_one_node.output[0]) # N loop carried dependencies outputs
graph.add_graph_output(output_acc_node.output[0]) # N loop carried dependencies outputs
if not isinstance(axis, int): # axis is a tensor, we need to feed it to the loop graph
output_axis_node = graph.make_node("Identity", inputs=[axis], op_name_scope=loop_name,
outputs=[utils.make_name("axis_out")])
graph.add_graph_output(output_axis_node.output[0]) # N loop carried dependencies outputs
return graph
@classmethod
def get_pads_node(cls, graph, pad_axis, axis, rank, is_pad_axis_const=True, base_name=""):
if isinstance(axis, int): # axis, is a const, we directly compute padding values
pre_pad = np.zeros(axis, "int64")
post_pad = np.zeros(rank - axis - 1, "int64")
if is_pad_axis_const: # pylint: disable=R1705
pads = np.concatenate([pre_pad, pad_axis[0:1], post_pad,
pre_pad, pad_axis[1:2], post_pad])
pads_node = graph.make_const(utils.make_name("pads"), pads)
return pads_node
else:
pre_pad_node = graph.make_const(utils.make_name("pre_pad"), pre_pad)
post_pad_node = graph.make_const(utils.make_name("post_pad"), post_pad)
else: # axis is a tensor, we need to compute padding values at runtime
if is_pad_axis_const:
pad_axis = [graph.make_const(utils.make_name("pad"),
np.array([pad], "int64")).output[0] for pad in pad_axis]
rank_tensor = graph.make_const(utils.make_name("rank"), np.array([rank], "int64")).output[0]
zero_node = graph.make_const(utils.make_name("zero"), np.array([0], "int64"))
one_node = graph.make_const(utils.make_name("zero"), np.array([1], "int64"))
post_repeat_node = graph.make_node("Sub", inputs=[rank_tensor, axis],
outputs=[utils.make_name("post_repeat")], op_name_scope=base_name)
post_repeat_node = graph.make_node("Sub", inputs=[post_repeat_node.output[0], one_node.output[0]],
outputs=[utils.make_name("post_repeat")], op_name_scope=base_name)
pre_pad_node = graph.make_node("Tile", inputs=[zero_node.output[0], axis], op_name_scope=base_name,
attr={"axis": 0}, outputs=[utils.make_name("pre_pad")])
post_pad_node = graph.make_node("Tile", inputs=[zero_node.output[0], post_repeat_node.output[0]],
attr={"axis": 0}, outputs=[utils.make_name("post_pad")],
op_name_scope=base_name)
pads_node = graph.make_node("Concat", attr={"axis": 0}, outputs=[utils.make_name("pads")],
op_name_scope=base_name,
inputs=[pre_pad_node.output[0], pad_axis[0], post_pad_node.output[0],
pre_pad_node.output[0], pad_axis[1], post_pad_node.output[0]])
return pads_node
@tf_op("Round")
class Round:
@classmethod
def version_1(cls, ctx, node, **kwargs):
# Not exactly nearest even but close enough
np_dtype = utils.map_onnx_to_numpy_type(ctx.get_dtype(node.input[0]))
const_half = ctx.make_const(utils.make_name("const_half"), np.array(0.5, np_dtype)).output[0]
add_node = ctx.make_node("Add", [node.input[0], const_half], op_name_scope=node.name).output[0]
node.type = "Floor"
ctx.replace_inputs(node, [add_node])
@classmethod
def version_11(cls, ctx, node, **kwargs):
pass
@tf_op("Rint", onnx_op="Round")
class Rint:
@classmethod
def version_11(cls, ctx, node, **kwargs):
# Same with tf round, two different people just happened to write the function.
# https://github.com/tensorflow/tensorflow/issues/709
pass
@tf_op("MatrixDeterminant", onnx_op="Det")
class Det:
@classmethod
def version_11(cls, ctx, node, **kwargs):
pass
@tf_op(["LeftShift", "RightShift"])
class BitShift:
@classmethod
def version_11(cls, ctx, node, **kwargs):
dir_map = {"LeftShift": "LEFT", "RightShift": "RIGHT"}
direction = dir_map[node.type]
supported = [onnx_pb.TensorProto.UINT8, onnx_pb.TensorProto.UINT16,
onnx_pb.TensorProto.UINT32, onnx_pb.TensorProto.UINT64]
type_map = {onnx_pb.TensorProto.INT8: onnx_pb.TensorProto.UINT8,
onnx_pb.TensorProto.INT16: onnx_pb.TensorProto.UINT32,
onnx_pb.TensorProto.INT32: onnx_pb.TensorProto.UINT64}
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.remove_node(node.name)
node = ctx.make_node("BitShift", inputs=node.input, outputs=node.output, name=node.name,
shapes=shapes, dtypes=dtypes, domain=constants.ONNX_DOMAIN, attr={'direction': direction})
if node.maybe_cast_input([supported, supported], type_map):
cast_back_node = ctx.insert_new_node_on_output(
"Cast", node.output[0], name=utils.make_name(node.name) + "_castback",
to=dtypes[0])
ctx.set_dtype(cast_back_node.output[0], dtypes[0])
ctx.copy_shape(node.name, cast_back_node.output[0])
ctx.copy_dtype(node.input[0], node.output[0])
@tf_op("BitwiseAnd")
@tf_op("BitwiseOr")
@tf_op("BitwiseXor")
@tf_op("Invert", onnx_op="BitwiseNot")
class BitwiseOps:
@classmethod
def version_18(cls, ctx, node, **kwargs):
pass
@tf_op("SquaredDistance", onnx_op="MeanSquaredDistance")
class SquaredDistance:
@classmethod
def version_12(cls, ctx, node, **kwargs):
node.attr["reduction"] = "none"
@tf_op("Einsum")
class Einsum:
@classmethod
def version_12(cls, ctx, node, **kwargs):
del node.attr["N"]
node.attr["equation"].s = node.attr["equation"].s.lower()
def should_replace_with_matmul():
# True is 2nd inp is const and eqn is ...ik,kj->...ij (possibly transpose 2nd inp)
# When the 2nd input is const, ort pre-packs the Matmul but not Einsum so this is faster
eqn = node.get_attr_value("equation").decode()
parts = eqn.split('->')
lhs = parts[0]
terms = lhs.split(',')
if len(parts) >= 2:
rhs = parts[1]
else:
rhs = sorted(terms)
if len(terms) != 2:
return False, None
t1, t2 = terms
# No repeat vars and all terms have >= 2 vars
if any(len(set(t)) < len(t) or len(t) < 2 for t in [t1, t2, rhs]):
return False, None
if len(t2) != 2:
return False, None
i = rhs[-2]
j = rhs[-1]
if t2[0] == j:
k = t2[1]
transpose_t2 = True
elif t2[1] == j:
k = t2[0]
transpose_t2 = False
else:
return False, None
return t1.endswith(i + k) and t1[:-2] == rhs[:-2], transpose_t2
should_replace, transpose_t2 = should_replace_with_matmul()
if should_replace:
if transpose_t2:
inp_trans = ctx.make_node("Transpose", [node.input[1]], attr={'perm': [1, 0]}).output[0]
ctx.replace_inputs(node, [node.input[0], inp_trans])
node.type = "MatMul"
del node.attr["equation"]
@tf_op("IsFinite")
class IsFinite:
@classmethod
def version_10(cls, ctx, node, **kwargs):
# map to onnx as:
# not (isinf(x) or isnan(x))
shapes = node.output_shapes
dtypes = [onnx_pb.TensorProto.BOOL] * len(node.output_dtypes)
outputs = node.output
ctx.remove_node(node.name)
inf_node = ctx.make_node("IsInf", inputs=node.input, name=utils.make_name(node.name),
shapes=shapes, dtypes=dtypes)
nan_node = ctx.make_node("IsNaN", inputs=node.input, name=utils.make_name(node.name),
shapes=shapes, dtypes=dtypes)
or_node = ctx.make_node("Or", inputs=[inf_node.output[0], nan_node.output[0]], name=utils.make_name(node.name),
shapes=shapes, dtypes=dtypes)
_ = ctx.make_node("Not", inputs=or_node.output, name=node.name, outputs=outputs,
shapes=shapes, dtypes=dtypes)
@tf_op("Atan2")
class Atan2Op:
# support more dtype
@classmethod
def version_9(cls, ctx, node, **kwargs):
"""
Obtained with a linear regression.
::
def atan2(y, x):
sx = numpy.sign(x)
sy = numpy.sign(y)
pi_part = (sy + sx * (sy ** 2 - 1)) * (sx - 1) * (-numpy.pi/2)
atan_part = numpy.arctan(y / (x + (1 - sx ** 2))) * sx ** 2
return atan_part + pi_part
"""
supported_dtypes = [
onnx_pb.TensorProto.FLOAT,
onnx_pb.TensorProto.FLOAT16,
onnx_pb.TensorProto.DOUBLE
]
onnx_dtype = ctx.get_dtype(node.input[0])
utils.make_sure(onnx_dtype in supported_dtypes, "Unsupported input type.")
shape = ctx.get_shape(node.input[0])
np_dtype = utils.map_onnx_to_numpy_type(onnx_dtype)
# sign part
sign_x_node = ctx.make_node(
"Sign", inputs=node.input[1:],
name=utils.make_name(node.name + 'signx'))
sign_y_node = ctx.make_node(
"Sign", inputs=node.input[:1],
name=utils.make_name(node.name + 'signy'))
sx_node = ctx.make_node(
"Cast", sign_x_node.output[:1], attr={"to": onnx_dtype},
name=utils.make_name(node.name + 'csignx'))
sy_node = ctx.make_node(
"Cast", sign_y_node.output[:1], attr={"to": onnx_dtype},
name=utils.make_name(node.name + 'csigny'))
# cst
one_node = ctx.make_const(
utils.make_name("{}_one".format(node.name)),
np.array([1], dtype=np_dtype))
pib2_node = ctx.make_const(
utils.make_name("{}_pi".format(node.name)),
np.array(- np.pi / 2, dtype=np_dtype))
# pi_part = (sy + sx * (sy ** 2 - 1)) * (sx - 1) * (-numpy.pi/2)
sxm1_node = ctx.make_node(
"Sub", [sx_node.output[0], one_node.output[0]],
name=utils.make_name(node.name + 'sxm1'))
sy2_node = ctx.make_node(
"Mul", [sy_node.output[0], sy_node.output[0]],
name=utils.make_name(node.name + 'sy2'))
sy2m1_node = ctx.make_node(
"Sub", [sy2_node.output[0], one_node.output[0]],
name=utils.make_name(node.name + 'sy2m1'))
sxsy2m1_node = ctx.make_node(
"Mul", [sx_node.output[0], sy2m1_node.output[0]],
name=utils.make_name(node.name + 'sxsy2m1'))
sysxsy2m1_node = ctx.make_node(
"Add", [sy_node.output[0], sxsy2m1_node.output[0]],
name=utils.make_name(node.name + 'sysxsy2m1'))
m1_node = ctx.make_node(
"Mul", [sysxsy2m1_node.output[0], sxm1_node.output[0]],
name=utils.make_name(node.name + 'm1'))
pi_part = ctx.make_node(
"Mul", [m1_node.output[0], pib2_node.output[0]],
name=utils.make_name(node.name + 'pip'))
# atan
sx2_node = ctx.make_node(
"Mul", [sx_node.output[0], sx_node.output[0]],
name=utils.make_name(node.name + 'sx2'))
sx2m1_node = ctx.make_node(
"Sub", [sx2_node.output[0], one_node.output[0]],
name=utils.make_name(node.name + 'sx2m1'))
xsx2m1_node = ctx.make_node(
"Add", [node.input[1], sx2m1_node.output[0]],
name=utils.make_name(node.name + 'xsx2m1'))
div_node = ctx.make_node(
"Div", inputs=[node.input[0], xsx2m1_node.output[0]],
name=utils.make_name(node.name + 'div'))
atan0_node = ctx.make_node(
"Atan", inputs=[div_node.output[0]],
name=utils.make_name(node.name + 'atan0'))