-
Notifications
You must be signed in to change notification settings - Fork 55
/
gen_video.py
197 lines (147 loc) · 6.61 KB
/
gen_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import os
import cv2
import numpy as np
import torch
from model import Generator
from psp_encoder.psp_encoders import PSPEncoder
from utils import ten2cv, cv2ten
import glob
from tqdm import tqdm
import random
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def sigmoid(x, w=1):
return 1. / (1 + np.exp(-w * x))
def get_alphas(start=-5, end=5, step=0.5, len_tail=10):
return [0] + [sigmoid(alpha) for alpha in np.arange(start, end, step)] + [1] * len_tail
def slide(entries, margin=32):
"""Returns a sliding reference window.
Args:
entries: a list containing two reference images, x_prev and x_next,
both of which has a shape (1, 3, H, W)
Returns:
canvas: output slide of shape (num_frames, 3, H*2, W+margin)
"""
_, C, H, W = entries[0].shape
alphas = get_alphas()
T = len(alphas) # number of frames
canvas = - torch.ones((T, C, H*2, W + margin))
merged = torch.cat(entries, dim=2) # (1, 3, H*2, W)
for t, alpha in enumerate(alphas):
top = int(H * (1 - alpha)) # top, bottom for canvas
bottom = H * 2
m_top = 0 # top, bottom for merged
m_bottom = 2 * H - top
canvas[t, :, top:bottom, :W] = merged[:, :, m_top:m_bottom, :]
return canvas
def slide_one_window(entries, margin=32):
"""Returns a sliding reference window.
Args:
entries: a list containing two reference images, x_prev and x_next,
both of which has a shape (1, 3, H, W)
Returns:
canvas: output slide of shape (num_frames, 3, H, W+margin)
"""
_, C, H, W = entries[0].shape
device = entries[0].device
alphas = get_alphas()
T = len(alphas) # number of frames
canvas = - torch.ones((T, C, H, W + margin)).to(device)
merged = torch.cat(entries, dim=2) # (1, 3, H*2, W)
for t, alpha in enumerate(alphas):
m_top = int(H * alpha) # top, bottom for merged
m_bottom = m_top + H
canvas[t, :, :, :W] = merged[:, :, m_top:m_bottom, :]
return canvas
def tensor2ndarray255(images):
images = torch.clamp(images * 0.5 + 0.5, 0, 1)
return (images.cpu().numpy().transpose(0, 2, 3, 1) * 255).astype(np.uint8)
@torch.no_grad()
def interpolate(args, g, sample_in, sample_style_prev, sample_style_next):
''' returns T x C x H x W '''
frames_ten = []
alphas = get_alphas()
for alpha in alphas:
sample_style = torch.lerp(sample_style_prev, sample_style_next, alpha)
frame_ten, _ = g([sample_in], z_embed=sample_style, add_weight_index=args.add_weight_index,
input_is_latent=True, return_latents=False, randomize_noise=False)
frames_ten.append(frame_ten)
frames_ten = torch.cat(frames_ten)
return frames_ten
@torch.no_grad()
def video_ref(args, g, psp_encoder, img_in_ten, img_style_tens, videoWriter):
sample_in = psp_encoder(img_in_ten)
img_style_ten_prev, sample_style_prev = None, None
for idx in tqdm(range(len(img_style_tens))):
img_style_ten_next = img_style_tens[idx]
sample_style_next = g_ema.get_z_embed(img_style_ten_next)
if img_style_ten_prev is None:
img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next
continue
interpolated = interpolate(args, g, sample_in, sample_style_prev, sample_style_next)
entries = [img_style_ten_prev, img_style_ten_next]
slided = slide_one_window(entries, margin=0) # [T, C, H, W)
frames = torch.cat([img_in_ten.expand_as(interpolated), slided, interpolated], dim=3).cpu() # [T, C, H, W*3)
frames = tensor2ndarray255(frames) # [T, H, W*3, C)
for frame_idx in range(frames.shape[0]):
frame = frames[frame_idx]
videoWriter.write(frame[:, :, ::-1])
img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next
# append last frame 10 time
for _ in range(10):
videoWriter.write(frame[:, :, ::-1])
if __name__ == '__main__':
device = 'cuda'
parser = argparse.ArgumentParser()
parser.add_argument('--size', type=int, default=1024)
parser.add_argument('--ckpt', type=str, default='', help='path to BlendGAN checkpoint')
parser.add_argument('--psp_encoder_ckpt', type=str, default='', help='path to psp_encoder checkpoint')
parser.add_argument('--style_img_path', type=str, default=None, help='path to style image')
parser.add_argument('--input_img_path', type=str, default=None, help='path to input image')
parser.add_argument('--add_weight_index', type=int, default=7)
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('--outdir', type=str, default="")
args = parser.parse_args()
outdir = args.outdir
if not os.path.exists(outdir):
os.makedirs(outdir, exist_ok=True)
args.latent = 512
args.n_mlp = 8
checkpoint = torch.load(args.ckpt)
model_dict = checkpoint['g_ema']
print('ckpt: ', args.ckpt)
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, load_pretrained_vgg=False
).to(device)
g_ema.load_state_dict(model_dict)
g_ema.eval()
del checkpoint, model_dict
psp_encoder = PSPEncoder(args.psp_encoder_ckpt, output_size=args.size).to(device)
psp_encoder.eval()
input_img_paths = sorted(glob.glob(os.path.join(args.input_img_path, '*.*')))
style_img_paths = sorted(glob.glob(os.path.join(args.style_img_path, '*.*')))[:]
for input_img_path in input_img_paths:
print('process: %s' % input_img_path)
name_in = os.path.splitext(os.path.basename(input_img_path))[0]
img_in = cv2.imread(input_img_path, 1)
img_in = cv2.resize(img_in, (args.size, args.size))
img_in_ten = cv2ten(img_in, device)
img_style_tens = []
style_img_path_rand = random.choices(style_img_paths, k=8)
for style_img_path in style_img_path_rand:
name_style = os.path.splitext(os.path.basename(style_img_path))[0]
img_style = cv2.imread(style_img_path, 1)
img_style = cv2.resize(img_style, (args.size, args.size))
img_style_ten = cv2ten(img_style, device)
img_style_tens.append(img_style_ten)
fname = f'{args.outdir}/{name_in}.mp4'
fourcc = cv2.VideoWriter_fourcc(*'XVID')
videoWriter = cv2.VideoWriter(fname, fourcc, 30, (args.size * 3, args.size))
video_ref(args, g_ema, psp_encoder, img_in_ten, img_style_tens, videoWriter)
videoWriter.release()
print('save video to: %s' % fname)
print('Done!')