-
Notifications
You must be signed in to change notification settings - Fork 4
/
radar.py
168 lines (142 loc) · 5.98 KB
/
radar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D
import matplotlib
import random
import os
import json
def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with `num_vars` axes.
This function creates a RadarAxes projection and registers it.
Parameters
----------
num_vars : int
Number of variables for radar chart.
frame : {'circle' | 'polygon'}
Shape of frame surrounding axes.
"""
# calculate evenly-spaced axis angles
theta = np.linspace(0, 2 * np.pi, num_vars, endpoint=False)
class RadarAxes(PolarAxes):
name = 'radar'
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# rotate plot such that the first axis is at the top
self.set_theta_zero_location('N')
def fill(self, *args, closed=True, **kwargs):
"""Override fill so that line is closed by default"""
return super().fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super().plot(*args, **kwargs)
for line in lines:
self._close_line(line)
def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)
def set_varlabels(self, labels):
self.set_thetagrids(np.degrees(theta), labels)
def _gen_axes_patch(self):
# The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
# in axes coordinates.
if frame == 'circle':
return Circle((0.5, 0.5), 0.5)
elif frame == 'polygon':
return RegularPolygon((0.5, 0.5), num_vars,
radius=.5, edgecolor="k")
else:
raise ValueError("unknown value for 'frame': %s" % frame)
def draw(self, renderer):
""" Draw. If frame is polygon, make gridlines polygon-shaped """
if frame == 'polygon':
gridlines = self.yaxis.get_gridlines()
for gl in gridlines:
gl.get_path()._interpolation_steps = num_vars
super().draw(renderer)
def _gen_axes_spines(self):
if frame == 'circle':
return super()._gen_axes_spines()
elif frame == 'polygon':
# spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
spine = Spine(axes=self,
spine_type='circle',
path=Path.unit_regular_polygon(num_vars))
# unit_regular_polygon gives a polygon of radius 1 centered at
# (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
# 0.5) in axes coordinates.
spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
+ self.transAxes)
return {'polar': spine}
else:
raise ValueError("unknown value for 'frame': %s" % frame)
register_projection(RadarAxes)
return theta
def generate_chart(output_folder,corpus_path,task,chart_type,models):
"""
output_folder : str
The path of folder that saves all evaluation results.
corpus_path : str
The path of json file that records corresponding file names of all metrics
task : {'itm' | 'itc'}
Task type of output result.
chart_type : str
Type of chart.
models : list
List of model name.
"""
m = json.load(open(corpus_path))
arrs = []
colors = ["cyan", "magenta", "crimson", "orange","blue"]
for model in models:
filepath = os.path.join(output_folder,model,task)
score_list = []
for item in m.keys():
data_num = len(m[item].keys())
data_score = []
for data in m[item].keys():
score = 0
file_num = len(m[item][data])
for file in m[item][data]:
json_name = os.path.join(filepath,f"{file}.json")
if not os.path.exists(json_name):
print(f"{file} has not been evaluated.")
return
else:
m1 = json.load(open(json_name))
score += m1["total_acc"]
data_score.append(score/file_num)
score_list.append(sum(data_score)/data_num)
arrs.append(score_list)
fig_ = plt.figure(figsize=(25, 8))
models_name = [models]
for i in range(len(models_name)):
data = [['O-Large', 'O-Medium', 'O-Small', 'O-Center', 'O-Mid', 'O-Margin', 'A-Color', 'A-Material', 'A-Size',
"A-State", "A-Action", "R-action", "R-spatial"],
('', arrs)]
N = len(data[0])
theta = radar_factory(N, frame='polygon')
spoke_labels = data.pop(0)
title, case_data = data[0]
ax = fig_.add_subplot(f'13{i+1}', projection='radar')
ax.set_rgrids([30, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90])
lines = []
labels = models_name[i]
for i, d in enumerate(case_data):
c = colors.pop()
line = ax.plot(theta, d, label=labels[i], color=c)
lines.append(line)
ax.fill(theta, d, alpha=0.25, color=c)
ax.set_varlabels(spoke_labels)
plt.legend(loc="best", bbox_to_anchor=(1, 1))
plt.show()
if __name__ == "__main__":
generate_chart('./output','corpus.json','itc',chart_type='radar',models=['vilt','albef'])