diff --git a/src/nnue/layers/affine_transform.h b/src/nnue/layers/affine_transform.h index d131836865f..b28712780b2 100644 --- a/src/nnue/layers/affine_transform.h +++ b/src/nnue/layers/affine_transform.h @@ -22,13 +22,141 @@ #define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #include +#include +#include #include "../nnue_common.h" +#include "../../simd.h" + +/* + This file contains the definition for a fully connected layer (aka affine transform). + Two approaches are employed, depending on the sizes of the transform. + + Approach 1: + - used when the PaddedInputDimensions >= 128 + - uses AVX512 if possible + - processes inputs in batches of 2*InputSimdWidth + - so in batches of 128 for AVX512 + - the weight blocks of size InputSimdWidth are transposed such that + access is sequential + - N columns of the weight matrix are processed a time, where N + depends on the architecture (the amount of registers) + - accumulate + hadd is used + + Approach 2: + - used when the PaddedInputDimensions < 128 + - does not use AVX512 + - expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32. + - that's why AVX512 is hard to implement + - expected use-case is small layers + - not optimized as well as the approach 1 + - inputs are processed in chunks of 4, weights are respectively transposed + - accumulation happens directly to int32s +*/ namespace Stockfish::Eval::NNUE::Layers { - // Affine transformation layer +// Fallback implementation for older/other architectures. +// Identical for both approaches. Requires the input to be padded to at least 16 values. +#if !defined(USE_SSSE3) + template + static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input) + { +# if defined(USE_SSE2) + // At least a multiple of 16, with SSE2. + static_assert(PaddedInputDimensions % 16 == 0); + constexpr IndexType NumChunks = PaddedInputDimensions / 16; + const __m128i Zeros = _mm_setzero_si128(); + const auto inputVector = reinterpret_cast(input); + +# elif defined(USE_MMX) + static_assert(InputDimensions % 8 == 0); + constexpr IndexType NumChunks = InputDimensions / 8; + const __m64 Zeros = _mm_setzero_si64(); + const auto inputVector = reinterpret_cast(input); + +# elif defined(USE_NEON) + static_assert(PaddedInputDimensions % 16 == 0); + constexpr IndexType NumChunks = PaddedInputDimensions / 16; + const auto inputVector = reinterpret_cast(input); +# endif + + for (IndexType i = 0; i < OutputDimensions; ++i) { + const IndexType offset = i * PaddedInputDimensions; + +# if defined(USE_SSE2) + __m128i sumLo = _mm_cvtsi32_si128(biases[i]); + __m128i sumHi = Zeros; + const auto row = reinterpret_cast(&weights[offset]); + for (IndexType j = 0; j < NumChunks; ++j) { + __m128i row_j = _mm_load_si128(&row[j]); + __m128i input_j = _mm_load_si128(&inputVector[j]); + __m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8); + __m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8); + __m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros); + __m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros); + __m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo); + __m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi); + sumLo = _mm_add_epi32(sumLo, productLo); + sumHi = _mm_add_epi32(sumHi, productHi); + } + __m128i sum = _mm_add_epi32(sumLo, sumHi); + __m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)); + sum = _mm_add_epi32(sum, sumHigh_64); + __m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2)); + sum = _mm_add_epi32(sum, sum_second_32); + output[i] = _mm_cvtsi128_si32(sum); + +# elif defined(USE_MMX) + __m64 sumLo = _mm_cvtsi32_si64(biases[i]); + __m64 sumHi = Zeros; + const auto row = reinterpret_cast(&weights[offset]); + for (IndexType j = 0; j < NumChunks; ++j) { + __m64 row_j = row[j]; + __m64 input_j = inputVector[j]; + __m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8); + __m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8); + __m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros); + __m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros); + __m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo); + __m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi); + sumLo = _mm_add_pi32(sumLo, productLo); + sumHi = _mm_add_pi32(sumHi, productHi); + } + __m64 sum = _mm_add_pi32(sumLo, sumHi); + sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum)); + output[i] = _mm_cvtsi64_si32(sum); + +# elif defined(USE_NEON) + int32x4_t sum = {biases[i]}; + const auto row = reinterpret_cast(&weights[offset]); + for (IndexType j = 0; j < NumChunks; ++j) { + int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]); + product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]); + sum = vpadalq_s16(sum, product); + } + output[i] = sum[0] + sum[1] + sum[2] + sum[3]; + +# else + std::int32_t sum = biases[i]; + for (IndexType j = 0; j < InputDimensions; ++j) { + sum += weights[offset + j] * input[j]; + } + output[i] = sum; +# endif + } + +# if defined(USE_MMX) + _mm_empty(); +# endif + } +#endif + + template + class AffineTransform; + + // A specialization for large inputs. template - class AffineTransform { + class AffineTransform= 2*64-1)>> { public: // Input/output type using InputType = typename PreviousLayer::OutputType; @@ -36,29 +164,49 @@ namespace Stockfish::Eval::NNUE::Layers { static_assert(std::is_same::value, ""); // Number of input/output dimensions - static constexpr IndexType InputDimensions = - PreviousLayer::OutputDimensions; + static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions; static constexpr IndexType OutputDimensions = OutDims; + static constexpr IndexType PaddedInputDimensions = - ceil_to_multiple(InputDimensions, MaxSimdWidth); -#if defined (USE_AVX512) - static constexpr const IndexType OutputSimdWidth = SimdWidth / 2; -#elif defined (USE_SSSE3) - static constexpr const IndexType OutputSimdWidth = SimdWidth / 4; -#endif + ceil_to_multiple(InputDimensions, MaxSimdWidth); + + static_assert(PaddedInputDimensions >= 128, "Something went wrong. This specialization should not have been chosen."); + #if defined (USE_AVX512) - static constexpr const IndexType InputSimdWidth = SimdWidth * 2; + static constexpr const IndexType InputSimdWidth = 64; + static constexpr const IndexType MaxNumOutputRegs = 16; +#elif defined (USE_AVX2) + static constexpr const IndexType InputSimdWidth = 32; + static constexpr const IndexType MaxNumOutputRegs = 8; #elif defined (USE_SSSE3) - static constexpr const IndexType InputSimdWidth = SimdWidth; + static constexpr const IndexType InputSimdWidth = 16; + static constexpr const IndexType MaxNumOutputRegs = 8; +#else + // The fallback implementation will not have permuted weights. + // We define these to avoid a lot of ifdefs later. + static constexpr const IndexType InputSimdWidth = 1; + static constexpr const IndexType MaxNumOutputRegs = 1; #endif + // A big block is a region in the weight matrix of the size [PaddedInputDimensions, NumOutputRegs]. + // A small block is a region of size [InputSimdWidth, 1] + + static constexpr const IndexType NumOutputRegs = std::min(MaxNumOutputRegs, OutputDimensions); + static constexpr const IndexType SmallBlockSize = InputSimdWidth; + static constexpr const IndexType BigBlockSize = NumOutputRegs * PaddedInputDimensions; + static constexpr const IndexType NumSmallBlocksInBigBlock = BigBlockSize / SmallBlockSize; + static constexpr const IndexType NumSmallBlocksPerOutput = PaddedInputDimensions / SmallBlockSize; + static constexpr const IndexType NumBigBlocks = OutputDimensions / NumOutputRegs; + + static_assert(OutputDimensions % NumOutputRegs == 0); + // Size of forward propagation buffer used in this layer static constexpr std::size_t SelfBufferSize = - ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize); + ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize); // Size of the forward propagation buffer used from the input layer to this layer static constexpr std::size_t BufferSize = - PreviousLayer::BufferSize + SelfBufferSize; + PreviousLayer::BufferSize + SelfBufferSize; // Hash value embedded in the evaluation file static constexpr std::uint32_t get_hash_value() { @@ -69,30 +217,35 @@ namespace Stockfish::Eval::NNUE::Layers { return hashValue; } + /* + Transposes the small blocks within a block. + Effectively means that weights can be traversed sequentially during inference. + */ + static IndexType get_weight_index(IndexType i) + { + const IndexType smallBlock = (i / SmallBlockSize) % NumSmallBlocksInBigBlock; + const IndexType smallBlockCol = smallBlock / NumSmallBlocksPerOutput; + const IndexType smallBlockRow = smallBlock % NumSmallBlocksPerOutput; + const IndexType bigBlock = i / BigBlockSize; + const IndexType rest = i % SmallBlockSize; + + const IndexType idx = + bigBlock * BigBlockSize + + smallBlockRow * SmallBlockSize * NumOutputRegs + + smallBlockCol * SmallBlockSize + + rest; + + return idx; + } + // Read network parameters bool read_parameters(std::istream& stream) { if (!previousLayer.read_parameters(stream)) return false; for (std::size_t i = 0; i < OutputDimensions; ++i) biases[i] = read_little_endian(stream); + for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) -#if !defined (USE_SSSE3) - weights[i] = read_little_endian(stream); -#elif defined (USE_VNNI) || defined (USE_AVX512) - if constexpr (OutputDimensions <= 8 && OutputDimensions != 1) - weights[i] = read_little_endian(stream); - else - weights[ - (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 + - i / PaddedInputDimensions * 4 + - i % 4 - ] = read_little_endian(stream); -#else - weights[ - (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 + - i / PaddedInputDimensions * 4 + - i % 4 - ] = read_little_endian(stream); -#endif + weights[get_weight_index(i)] = read_little_endian(stream); return !stream.fail(); } @@ -102,517 +255,285 @@ namespace Stockfish::Eval::NNUE::Layers { if (!previousLayer.write_parameters(stream)) return false; for (std::size_t i = 0; i < OutputDimensions; ++i) write_little_endian(stream, biases[i]); -#if !defined (USE_SSSE3) - for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) - write_little_endian(stream, weights[i]); -#else - std::unique_ptr unscrambledWeights = std::make_unique(OutputDimensions * PaddedInputDimensions); - for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) { - unscrambledWeights[i] = - weights[ - (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 + - i / PaddedInputDimensions * 4 + - i % 4 - ]; - } for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) - write_little_endian(stream, unscrambledWeights[i]); -#endif + write_little_endian(stream, weights[get_weight_index(i)]); return !stream.fail(); } + // Forward propagation const OutputType* propagate( const TransformedFeatureType* transformedFeatures, char* buffer) const { const auto input = previousLayer.propagate( - transformedFeatures, buffer + SelfBufferSize); + transformedFeatures, buffer + SelfBufferSize); + OutputType* output = reinterpret_cast(buffer); #if defined (USE_AVX512) + using vec_t = __m512i; + #define vec_setzero _mm512_setzero_si512 + #define vec_set_32 _mm512_set1_epi32 + #define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32 + #define vec_add_dpbusd_32x2 Simd::m512_add_dpbusd_epi32x2 + #define vec_hadd Simd::m512_hadd + #define vec_haddx4 Simd::m512_haddx4 +#elif defined (USE_AVX2) + using vec_t = __m256i; + #define vec_setzero _mm256_setzero_si256 + #define vec_set_32 _mm256_set1_epi32 + #define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 + #define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2 + #define vec_hadd Simd::m256_hadd + #define vec_haddx4 Simd::m256_haddx4 +#elif defined (USE_SSSE3) + using vec_t = __m128i; + #define vec_setzero _mm_setzero_si128 + #define vec_set_32 _mm_set1_epi32 + #define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 + #define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2 + #define vec_hadd Simd::m128_hadd + #define vec_haddx4 Simd::m128_haddx4 +#endif - [[maybe_unused]] const __m512i Ones512 = _mm512_set1_epi16(1); - - [[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int { - return _mm512_reduce_add_epi32(sum) + bias; - }; - - [[maybe_unused]] auto m512_hadd128x16_interleave = []( - __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3) -> __m512i { +#if defined (USE_SSSE3) + const vec_t* invec = reinterpret_cast(input); - __m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1); - __m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1); - __m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3); - __m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3); + // Perform accumulation to registers for each big block + for (IndexType bigBlock = 0; bigBlock < NumBigBlocks; ++bigBlock) + { + vec_t acc[NumOutputRegs] = { vec_setzero() }; + + // Each big block has NumOutputRegs small blocks in each "row", one per register. + // We process two small blocks at a time to save on one addition without VNNI. + for (IndexType smallBlock = 0; smallBlock < NumSmallBlocksPerOutput; smallBlock += 2) + { + const vec_t* weightvec = + reinterpret_cast( + weights + + bigBlock * BigBlockSize + + smallBlock * SmallBlockSize * NumOutputRegs); + + const vec_t in0 = invec[smallBlock + 0]; + const vec_t in1 = invec[smallBlock + 1]; + + for (IndexType k = 0; k < NumOutputRegs; ++k) + vec_add_dpbusd_32x2(acc[k], in0, weightvec[k], in1, weightvec[k + NumOutputRegs]); + } - __m512i sum01 = _mm512_add_epi32(sum01a, sum01b); - __m512i sum23 = _mm512_add_epi32(sum23a, sum23b); + // Horizontally add all accumulators. + if constexpr (NumOutputRegs % 4 == 0) + { + __m128i* outputvec = reinterpret_cast<__m128i*>(output); + const __m128i* biasvec = reinterpret_cast(biases); - __m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23); - __m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23); + for (IndexType k = 0; k < NumOutputRegs; k += 4) + { + const IndexType idx = (bigBlock * NumOutputRegs + k) / 4; + outputvec[idx] = vec_haddx4(acc[k+0], acc[k+1], acc[k+2], acc[k+3], biasvec[idx]); + } + } + else + { + for (IndexType k = 0; k < NumOutputRegs; ++k) + { + const IndexType idx = (bigBlock * NumOutputRegs + k); + output[idx] = vec_hadd(acc[k], biases[idx]); + } + } + } - return _mm512_add_epi32(sum0123a, sum0123b); - }; +# undef vec_setzero +# undef vec_set_32 +# undef vec_add_dpbusd_32 +# undef vec_add_dpbusd_32x2 +# undef vec_hadd +# undef vec_haddx4 +#else + // Use old implementation for the other architectures. + affine_transform_non_ssse3< + InputDimensions, + PaddedInputDimensions, + OutputDimensions>(output, weights, biases, input); - [[maybe_unused]] auto m512_haddx4 = [m512_hadd128x16_interleave]( - __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3, __m128i bias) -> __m128i { +#endif - __m512i sum = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3); + return output; + } - __m256i sum256lo = _mm512_castsi512_si256(sum); - __m256i sum256hi = _mm512_extracti64x4_epi64(sum, 1); + private: + using BiasType = OutputType; + using WeightType = std::int8_t; - sum256lo = _mm256_add_epi32(sum256lo, sum256hi); + PreviousLayer previousLayer; - __m128i sum128lo = _mm256_castsi256_si128(sum256lo); - __m128i sum128hi = _mm256_extracti128_si256(sum256lo, 1); + alignas(CacheLineSize) BiasType biases[OutputDimensions]; + alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions]; + }; - return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias); - }; + template + class AffineTransform> { + public: + // Input/output type + using InputType = typename PreviousLayer::OutputType; + using OutputType = std::int32_t; + static_assert(std::is_same::value, ""); - [[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) { -#if defined (USE_VNNI) - acc = _mm512_dpbusd_epi32(acc, a, b); -#else - __m512i product0 = _mm512_maddubs_epi16(a, b); - product0 = _mm512_madd_epi16(product0, Ones512); - acc = _mm512_add_epi32(acc, product0); -#endif - }; + // Number of input/output dimensions + static constexpr IndexType InputDimensions = + PreviousLayer::OutputDimensions; + static constexpr IndexType OutputDimensions = OutDims; + static constexpr IndexType PaddedInputDimensions = + ceil_to_multiple(InputDimensions, MaxSimdWidth); - [[maybe_unused]] auto m512_add_dpbusd_epi32x2 = [=](__m512i& acc, __m512i a0, __m512i b0, __m512i a1, __m512i b1) { -#if defined (USE_VNNI) - acc = _mm512_dpbusd_epi32(acc, a0, b0); - acc = _mm512_dpbusd_epi32(acc, a1, b1); -#else - __m512i product0 = _mm512_maddubs_epi16(a0, b0); - __m512i product1 = _mm512_maddubs_epi16(a1, b1); - product0 = _mm512_adds_epi16(product0, product1); - product0 = _mm512_madd_epi16(product0, Ones512); - acc = _mm512_add_epi32(acc, product0); -#endif - }; - - [[maybe_unused]] auto m512_add_dpbusd_epi32x4 = [=](__m512i& acc, __m512i a0, __m512i b0, __m512i a1, __m512i b1, - __m512i a2, __m512i b2, __m512i a3, __m512i b3) { -#if defined (USE_VNNI) - acc = _mm512_dpbusd_epi32(acc, a0, b0); - acc = _mm512_dpbusd_epi32(acc, a1, b1); - acc = _mm512_dpbusd_epi32(acc, a2, b2); - acc = _mm512_dpbusd_epi32(acc, a3, b3); -#else - __m512i product0 = _mm512_maddubs_epi16(a0, b0); - __m512i product1 = _mm512_maddubs_epi16(a1, b1); - __m512i product2 = _mm512_maddubs_epi16(a2, b2); - __m512i product3 = _mm512_maddubs_epi16(a3, b3); - product0 = _mm512_adds_epi16(product0, product1); - product0 = _mm512_madd_epi16(product0, Ones512); - product2 = _mm512_adds_epi16(product2, product3); - product2 = _mm512_madd_epi16(product2, Ones512); - acc = _mm512_add_epi32(acc, _mm512_add_epi32(product0, product2)); -#endif - }; + static_assert(PaddedInputDimensions < 128, "Something went wrong. This specialization should not have been chosen."); +#if defined (USE_SSSE3) + static constexpr const IndexType OutputSimdWidth = SimdWidth / 4; + static constexpr const IndexType InputSimdWidth = SimdWidth; #endif -#if defined (USE_AVX2) - [[maybe_unused]] const __m256i Ones256 = _mm256_set1_epi16(1); - - [[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int { - __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1)); - sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC)); - sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB)); - return _mm_cvtsi128_si32(sum128) + bias; - }; - - [[maybe_unused]] auto m256_haddx4 = [](__m256i sum0, __m256i sum1, __m256i sum2, __m256i sum3, __m128i bias) -> __m128i { - sum0 = _mm256_hadd_epi32(sum0, sum1); - sum2 = _mm256_hadd_epi32(sum2, sum3); + // Size of forward propagation buffer used in this layer + static constexpr std::size_t SelfBufferSize = + ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize); - sum0 = _mm256_hadd_epi32(sum0, sum2); + // Size of the forward propagation buffer used from the input layer to this layer + static constexpr std::size_t BufferSize = + PreviousLayer::BufferSize + SelfBufferSize; - __m128i sum128lo = _mm256_castsi256_si128(sum0); - __m128i sum128hi = _mm256_extracti128_si256(sum0, 1); + // Hash value embedded in the evaluation file + static constexpr std::uint32_t get_hash_value() { + std::uint32_t hashValue = 0xCC03DAE4u; + hashValue += OutputDimensions; + hashValue ^= PreviousLayer::get_hash_value() >> 1; + hashValue ^= PreviousLayer::get_hash_value() << 31; + return hashValue; + } - return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias); - }; + static IndexType get_weight_index_scrambled(IndexType i) + { + return + (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 + + i / PaddedInputDimensions * 4 + + i % 4; + } - [[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) { -#if defined (USE_VNNI) - acc = _mm256_dpbusd_epi32(acc, a, b); + static IndexType get_weight_index(IndexType i) + { +#if defined (USE_SSSE3) + return get_weight_index_scrambled(i); #else - __m256i product0 = _mm256_maddubs_epi16(a, b); - product0 = _mm256_madd_epi16(product0, Ones256); - acc = _mm256_add_epi32(acc, product0); + return i; #endif - }; + } - [[maybe_unused]] auto m256_add_dpbusd_epi32x2 = [=](__m256i& acc, __m256i a0, __m256i b0, __m256i a1, __m256i b1) { -#if defined (USE_VNNI) - acc = _mm256_dpbusd_epi32(acc, a0, b0); - acc = _mm256_dpbusd_epi32(acc, a1, b1); -#else - __m256i product0 = _mm256_maddubs_epi16(a0, b0); - __m256i product1 = _mm256_maddubs_epi16(a1, b1); - product0 = _mm256_adds_epi16(product0, product1); - product0 = _mm256_madd_epi16(product0, Ones256); - acc = _mm256_add_epi32(acc, product0); -#endif - }; - - [[maybe_unused]] auto m256_add_dpbusd_epi32x4 = [=](__m256i& acc, __m256i a0, __m256i b0, __m256i a1, __m256i b1, - __m256i a2, __m256i b2, __m256i a3, __m256i b3) { -#if defined (USE_VNNI) - acc = _mm256_dpbusd_epi32(acc, a0, b0); - acc = _mm256_dpbusd_epi32(acc, a1, b1); - acc = _mm256_dpbusd_epi32(acc, a2, b2); - acc = _mm256_dpbusd_epi32(acc, a3, b3); -#else - __m256i product0 = _mm256_maddubs_epi16(a0, b0); - __m256i product1 = _mm256_maddubs_epi16(a1, b1); - __m256i product2 = _mm256_maddubs_epi16(a2, b2); - __m256i product3 = _mm256_maddubs_epi16(a3, b3); - product0 = _mm256_adds_epi16(product0, product1); - product0 = _mm256_madd_epi16(product0, Ones256); - product2 = _mm256_adds_epi16(product2, product3); - product2 = _mm256_madd_epi16(product2, Ones256); - acc = _mm256_add_epi32(acc, _mm256_add_epi32(product0, product2)); -#endif - }; + // Read network parameters + bool read_parameters(std::istream& stream) { + if (!previousLayer.read_parameters(stream)) return false; + for (std::size_t i = 0; i < OutputDimensions; ++i) + biases[i] = read_little_endian(stream); + for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) + weights[get_weight_index(i)] = read_little_endian(stream); -#endif -#if defined (USE_SSSE3) + return !stream.fail(); + } - [[maybe_unused]] const __m128i Ones128 = _mm_set1_epi16(1); - - [[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int { - sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC - sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB - return _mm_cvtsi128_si32(sum) + bias; - }; - - [[maybe_unused]] auto m128_haddx4 = [](__m128i sum0, __m128i sum1, __m128i sum2, __m128i sum3, __m128i bias) -> __m128i { - sum0 = _mm_hadd_epi32(sum0, sum1); - sum2 = _mm_hadd_epi32(sum2, sum3); - sum0 = _mm_hadd_epi32(sum0, sum2); - return _mm_add_epi32(sum0, bias); - }; - - [[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) { - __m128i product0 = _mm_maddubs_epi16(a, b); - product0 = _mm_madd_epi16(product0, Ones128); - acc = _mm_add_epi32(acc, product0); - }; - - [[maybe_unused]] auto m128_add_dpbusd_epi32x2 = [=](__m128i& acc, __m128i a0, __m128i b0, __m128i a1, __m128i b1) { - __m128i product0 = _mm_maddubs_epi16(a0, b0); - __m128i product1 = _mm_maddubs_epi16(a1, b1); - product0 = _mm_adds_epi16(product0, product1); - product0 = _mm_madd_epi16(product0, Ones128); - acc = _mm_add_epi32(acc, product0); - }; - - [[maybe_unused]] auto m128_add_dpbusd_epi32x4 = [=](__m128i& acc, __m128i a0, __m128i b0, __m128i a1, __m128i b1, - __m128i a2, __m128i b2, __m128i a3, __m128i b3) { - __m128i product0 = _mm_maddubs_epi16(a0, b0); - __m128i product1 = _mm_maddubs_epi16(a1, b1); - __m128i product2 = _mm_maddubs_epi16(a2, b2); - __m128i product3 = _mm_maddubs_epi16(a3, b3); - product0 = _mm_adds_epi16(product0, product1); - product0 = _mm_madd_epi16(product0, Ones128); - product2 = _mm_adds_epi16(product2, product3); - product2 = _mm_madd_epi16(product2, Ones128); - acc = _mm_add_epi32(acc, _mm_add_epi32(product0, product2)); - }; + // Write network parameters + bool write_parameters(std::ostream& stream) const { + if (!previousLayer.write_parameters(stream)) return false; + for (std::size_t i = 0; i < OutputDimensions; ++i) + write_little_endian(stream, biases[i]); -#endif + for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) + write_little_endian(stream, weights[get_weight_index(i)]); -#if defined (USE_AVX512) - using vec_t = __m512i; - #define vec_setzero _mm512_setzero_si512 - #define vec_set_32 _mm512_set1_epi32 - [[maybe_unused]] auto& vec_add_dpbusd_32 = m512_add_dpbusd_epi32; - [[maybe_unused]] auto& vec_add_dpbusd_32x2 = m512_add_dpbusd_epi32x2; - [[maybe_unused]] auto& vec_add_dpbusd_32x4 = m512_add_dpbusd_epi32x4; - [[maybe_unused]] auto& vec_hadd = m512_hadd; - [[maybe_unused]] auto& vec_haddx4 = m512_haddx4; -#elif defined (USE_AVX2) + return !stream.fail(); + } + // Forward propagation + const OutputType* propagate( + const TransformedFeatureType* transformedFeatures, char* buffer) const { + const auto input = previousLayer.propagate( + transformedFeatures, buffer + SelfBufferSize); + const auto output = reinterpret_cast(buffer); + +#if defined (USE_AVX2) using vec_t = __m256i; #define vec_setzero _mm256_setzero_si256 #define vec_set_32 _mm256_set1_epi32 - [[maybe_unused]] auto& vec_add_dpbusd_32 = m256_add_dpbusd_epi32; - [[maybe_unused]] auto& vec_add_dpbusd_32x2 = m256_add_dpbusd_epi32x2; - [[maybe_unused]] auto& vec_add_dpbusd_32x4 = m256_add_dpbusd_epi32x4; - [[maybe_unused]] auto& vec_hadd = m256_hadd; - [[maybe_unused]] auto& vec_haddx4 = m256_haddx4; + #define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 + #define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2 + #define vec_add_dpbusd_32x4 Simd::m256_add_dpbusd_epi32x4 + #define vec_hadd Simd::m256_hadd + #define vec_haddx4 Simd::m256_haddx4 #elif defined (USE_SSSE3) using vec_t = __m128i; #define vec_setzero _mm_setzero_si128 #define vec_set_32 _mm_set1_epi32 - [[maybe_unused]] auto& vec_add_dpbusd_32 = m128_add_dpbusd_epi32; - [[maybe_unused]] auto& vec_add_dpbusd_32x2 = m128_add_dpbusd_epi32x2; - [[maybe_unused]] auto& vec_add_dpbusd_32x4 = m128_add_dpbusd_epi32x4; - [[maybe_unused]] auto& vec_hadd = m128_hadd; - [[maybe_unused]] auto& vec_haddx4 = m128_haddx4; + #define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 + #define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2 + #define vec_add_dpbusd_32x4 Simd::m128_add_dpbusd_epi32x4 + #define vec_hadd Simd::m128_hadd + #define vec_haddx4 Simd::m128_haddx4 #endif #if defined (USE_SSSE3) - const auto output = reinterpret_cast(buffer); const auto inputVector = reinterpret_cast(input); -#endif - -#if defined (USE_VNNI) || defined (USE_AVX512) - - static_assert(OutputDimensions == 1 || OutputDimensions % 4 == 0); - - // OutputDimensions is either 1 or a multiple of SimdWidth - // because then it is also an input dimension. - if constexpr (OutputDimensions <= 8 && OutputDimensions != 1) - { - constexpr IndexType NumChunks = PaddedInputDimensions / InputSimdWidth; - - static_assert(NumChunks % 2 == 0); - - const auto input_vec = reinterpret_cast(input); - const auto bias_vec = reinterpret_cast(biases); - auto out_vec = reinterpret_cast<__m128i*>(output); - - vec_t regs[OutputDimensions]; - for (IndexType k = 0; k < OutputDimensions; ++k) - regs[k] = vec_setzero(); - - for (IndexType i = 0; i < NumChunks / 2; ++i) - { - const vec_t in0 = input_vec[i * 2 + 0]; - const vec_t in1 = input_vec[i * 2 + 1]; - for (IndexType k = 0; k < OutputDimensions; ++k) - { - const vec_t w0 = reinterpret_cast(&weights[k * PaddedInputDimensions])[i * 2 + 0]; - const vec_t w1 = reinterpret_cast(&weights[k * PaddedInputDimensions])[i * 2 + 1]; - vec_add_dpbusd_32(regs[k], in0, w0); - vec_add_dpbusd_32(regs[k], in1, w1); - } - } - - for (IndexType k = 0; k < OutputDimensions / 4; ++k) - { - out_vec[k] = vec_haddx4( - regs[k * 4 + 0], - regs[k * 4 + 1], - regs[k * 4 + 2], - regs[k * 4 + 3], - bias_vec[k] - ); - } - } - else if constexpr (InputDimensions == 8) - { - const auto input32 = reinterpret_cast(input); - __m256i* outptr = reinterpret_cast<__m256i*>(output); - std::memcpy(output, biases, OutputDimensions * sizeof(OutputType)); - - const __m256i in0 = _mm256_set1_epi32(input32[0]); - const __m256i in1 = _mm256_set1_epi32(input32[1]); - const auto col0 = reinterpret_cast(&weights[0]); - const auto col1 = reinterpret_cast(&weights[OutputDimensions * 4]); - for (IndexType j = 0; j * 8 < OutputDimensions; ++j) - m256_add_dpbusd_epi32x2(outptr[j], in0, col0[j], in1, col1[j]); - } - else -#elif defined (USE_SSSE3) - - if constexpr (OutputDimensions % OutputSimdWidth == 0 && InputDimensions == 8) - { - const auto input32 = reinterpret_cast(input); - vec_t* outptr = reinterpret_cast(output); - std::memcpy(output, biases, OutputDimensions * sizeof(OutputType)); - - const vec_t in0 = vec_set_32(input32[0]); - const vec_t in1 = vec_set_32(input32[1]); - const auto col0 = reinterpret_cast(&weights[0]); - const auto col1 = reinterpret_cast(&weights[OutputDimensions * 4]); - for (IndexType j = 0; j * OutputSimdWidth < OutputDimensions; ++j) - vec_add_dpbusd_32x2(outptr[j], in0, col0[j], in1, col1[j]); - } - else - -#endif - -#if defined (USE_SSSE3) + static_assert(InputDimensions % 8 == 0); + static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1); if constexpr (OutputDimensions % OutputSimdWidth == 0) { - static_assert(InputDimensions % 16 == 0); - - constexpr IndexType NumChunks = InputDimensions / 4; - constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth; - - const auto input32 = reinterpret_cast(input); - const vec_t* biasvec = reinterpret_cast(biases); - vec_t outs[NumRegs]; + constexpr IndexType NumChunks = InputDimensions / 4; + constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth; + + const auto input32 = reinterpret_cast(input); + const vec_t* biasvec = reinterpret_cast(biases); + vec_t acc[NumRegs]; + for (IndexType k = 0; k < NumRegs; ++k) + acc[k] = biasvec[k]; + + for (IndexType i = 0; i < NumChunks; i += 2) + { + const vec_t in0 = vec_set_32(input32[i + 0]); + const vec_t in1 = vec_set_32(input32[i + 1]); + const auto col0 = reinterpret_cast(&weights[(i + 0) * OutputDimensions * 4]); + const auto col1 = reinterpret_cast(&weights[(i + 1) * OutputDimensions * 4]); for (IndexType k = 0; k < NumRegs; ++k) - outs[k] = biasvec[k]; - - for (IndexType i = 0; i < NumChunks; i += 4) - { - const vec_t in0 = vec_set_32(input32[i + 0]); - const vec_t in1 = vec_set_32(input32[i + 1]); - const vec_t in2 = vec_set_32(input32[i + 2]); - const vec_t in3 = vec_set_32(input32[i + 3]); - const auto col0 = reinterpret_cast(&weights[(i + 0) * OutputDimensions * 4]); - const auto col1 = reinterpret_cast(&weights[(i + 1) * OutputDimensions * 4]); - const auto col2 = reinterpret_cast(&weights[(i + 2) * OutputDimensions * 4]); - const auto col3 = reinterpret_cast(&weights[(i + 3) * OutputDimensions * 4]); - for (IndexType k = 0; k < NumRegs; ++k) - vec_add_dpbusd_32x4(outs[k], in0, col0[k], in1, col1[k], in2, col2[k], in3, col3[k]); - } + vec_add_dpbusd_32x2(acc[k], in0, col0[k], in1, col1[k]); + } - vec_t* outptr = reinterpret_cast(output); - for (IndexType k = 0; k < NumRegs; ++k) - outptr[k] = outs[k]; + vec_t* outptr = reinterpret_cast(output); + for (IndexType k = 0; k < NumRegs; ++k) + outptr[k] = acc[k]; } else if constexpr (OutputDimensions == 1) { - static_assert(InputDimensions % 4 == 0); - -#if defined (USE_AVX512) - if constexpr (PaddedInputDimensions % (SimdWidth * 2) != 0) - { - constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; - const auto inputVector256 = reinterpret_cast(input); - - __m256i sum0 = _mm256_setzero_si256(); - const auto row0 = reinterpret_cast(&weights[0]); - - for (int j = 0; j < (int)NumChunks; ++j) - { - const __m256i in = inputVector256[j]; - m256_add_dpbusd_epi32(sum0, in, row0[j]); - } - output[0] = m256_hadd(sum0, biases[0]); - } - else -#endif - { -#if defined (USE_AVX512) - constexpr IndexType NumChunks = PaddedInputDimensions / (SimdWidth * 2); -#else - constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; -#endif - vec_t sum0 = vec_setzero(); - const auto row0 = reinterpret_cast(&weights[0]); - - for (int j = 0; j < (int)NumChunks; ++j) - { - const vec_t in = inputVector[j]; - vec_add_dpbusd_32(sum0, in, row0[j]); - } - output[0] = vec_hadd(sum0, biases[0]); - } - } - -#else - -// Use old implementation for the other architectures. - - auto output = reinterpret_cast(buffer); - -#if defined(USE_SSE2) - // At least a multiple of 16, with SSE2. - static_assert(PaddedInputDimensions % SimdWidth == 0); - constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; - const __m128i Zeros = _mm_setzero_si128(); - const auto inputVector = reinterpret_cast(input); - -#elif defined(USE_MMX) - static_assert(InputDimensions % SimdWidth == 0); - constexpr IndexType NumChunks = InputDimensions / SimdWidth; - const __m64 Zeros = _mm_setzero_si64(); - const auto inputVector = reinterpret_cast(input); - -#elif defined(USE_NEON) - static_assert(PaddedInputDimensions % SimdWidth == 0); - constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; - const auto inputVector = reinterpret_cast(input); -#endif - - for (IndexType i = 0; i < OutputDimensions; ++i) { - const IndexType offset = i * PaddedInputDimensions; - -#if defined(USE_SSE2) - __m128i sumLo = _mm_cvtsi32_si128(biases[i]); - __m128i sumHi = Zeros; - const auto row = reinterpret_cast(&weights[offset]); - for (IndexType j = 0; j < NumChunks; ++j) { - __m128i row_j = _mm_load_si128(&row[j]); - __m128i input_j = _mm_load_si128(&inputVector[j]); - __m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8); - __m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8); - __m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros); - __m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros); - __m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo); - __m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi); - sumLo = _mm_add_epi32(sumLo, productLo); - sumHi = _mm_add_epi32(sumHi, productHi); - } - __m128i sum = _mm_add_epi32(sumLo, sumHi); - __m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)); - sum = _mm_add_epi32(sum, sumHigh_64); - __m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2)); - sum = _mm_add_epi32(sum, sum_second_32); - output[i] = _mm_cvtsi128_si32(sum); - -#elif defined(USE_MMX) - __m64 sumLo = _mm_cvtsi32_si64(biases[i]); - __m64 sumHi = Zeros; - const auto row = reinterpret_cast(&weights[offset]); - for (IndexType j = 0; j < NumChunks; ++j) { - __m64 row_j = row[j]; - __m64 input_j = inputVector[j]; - __m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8); - __m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8); - __m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros); - __m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros); - __m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo); - __m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi); - sumLo = _mm_add_pi32(sumLo, productLo); - sumHi = _mm_add_pi32(sumHi, productHi); - } - __m64 sum = _mm_add_pi32(sumLo, sumHi); - sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum)); - output[i] = _mm_cvtsi64_si32(sum); - -#elif defined(USE_NEON) - int32x4_t sum = {biases[i]}; - const auto row = reinterpret_cast(&weights[offset]); - for (IndexType j = 0; j < NumChunks; ++j) { - int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]); - product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]); - sum = vpadalq_s16(sum, product); - } - output[i] = sum[0] + sum[1] + sum[2] + sum[3]; - -#else - OutputType sum = biases[i]; - for (IndexType j = 0; j < InputDimensions; ++j) { - sum += weights[offset + j] * input[j]; + constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; + vec_t sum0 = vec_setzero(); + const auto row0 = reinterpret_cast(&weights[0]); + + for (int j = 0; j < (int)NumChunks; ++j) + { + const vec_t in = inputVector[j]; + vec_add_dpbusd_32(sum0, in, row0[j]); } - output[i] = sum; -#endif - + output[0] = vec_hadd(sum0, biases[0]); } -#if defined(USE_MMX) - _mm_empty(); -#endif -#endif - -#if (!defined (USE_SSSE3) && defined (USE_SSE2)) || defined (USE_NEON) - static_assert(SimdWidth <= 16, "Otherwise we run outside of the padding for the output."); - if constexpr (SimdWidth > OutputDimensions && OutputDimensions != 1) - for (IndexType i = OutputDimensions; i < SimdWidth; ++i) - output[i] = 0; +# undef vec_setzero +# undef vec_set_32 +# undef vec_add_dpbusd_32 +# undef vec_add_dpbusd_32x2 +# undef vec_add_dpbusd_32x4 +# undef vec_hadd +# undef vec_haddx4 +#else + // Use old implementation for the other architectures. + affine_transform_non_ssse3< + InputDimensions, + PaddedInputDimensions, + OutputDimensions>(output, weights, biases, input); #endif return output; diff --git a/src/nnue/layers/clipped_relu.h b/src/nnue/layers/clipped_relu.h index 65455df4944..c6f3ccade7d 100644 --- a/src/nnue/layers/clipped_relu.h +++ b/src/nnue/layers/clipped_relu.h @@ -35,9 +35,10 @@ namespace Stockfish::Eval::NNUE::Layers { static_assert(std::is_same::value, ""); // Number of input/output dimensions - static constexpr IndexType InputDimensions = - PreviousLayer::OutputDimensions; + static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions; static constexpr IndexType OutputDimensions = InputDimensions; + static constexpr IndexType PaddedOutputDimensions = + ceil_to_multiple(OutputDimensions, 32); // Size of forward propagation buffer used in this layer static constexpr std::size_t SelfBufferSize = @@ -179,6 +180,15 @@ namespace Stockfish::Eval::NNUE::Layers { output[i] = static_cast( std::max(0, std::min(127, input[i] >> WeightScaleBits))); } + + // Affine transform layers expect that there is at least + // ceil_to_multiple(OutputDimensions, 32) initialized values. + // We cannot do this in the affine transform because it requires + // preallocating space here. + for (IndexType i = OutputDimensions; i < PaddedOutputDimensions; ++i) { + output[i] = 0; + } + return output; } diff --git a/src/simd.h b/src/simd.h new file mode 100644 index 00000000000..62e36bff02b --- /dev/null +++ b/src/simd.h @@ -0,0 +1,341 @@ +/* + Stockfish, a UCI chess playing engine derived from Glaurung 2.1 + Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) + + Stockfish is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Stockfish is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#ifndef STOCKFISH_SIMD_H_INCLUDED +#define STOCKFISH_SIMD_H_INCLUDED + +#if defined(USE_AVX2) +# include + +#elif defined(USE_SSE41) +# include + +#elif defined(USE_SSSE3) +# include + +#elif defined(USE_SSE2) +# include + +#elif defined(USE_MMX) +# include + +#elif defined(USE_NEON) +# include +#endif + +// The inline asm is only safe for GCC, where it is necessary to get good codegen. +// See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101693 +// Clang does fine without it. +// Play around here: https://godbolt.org/z/7EWqrYq51 +#if (defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER)) +#define USE_INLINE_ASM +#endif + +namespace Stockfish::Simd { + +#if defined (USE_AVX512) + + [[maybe_unused]] static int m512_hadd(__m512i sum, int bias) { + return _mm512_reduce_add_epi32(sum) + bias; + } + + /* + Parameters: + sum0 = [zmm0.i128[0], zmm0.i128[1], zmm0.i128[2], zmm0.i128[3]] + sum1 = [zmm1.i128[0], zmm1.i128[1], zmm1.i128[2], zmm1.i128[3]] + sum2 = [zmm2.i128[0], zmm2.i128[1], zmm2.i128[2], zmm2.i128[3]] + sum3 = [zmm3.i128[0], zmm3.i128[1], zmm3.i128[2], zmm3.i128[3]] + + Returns: + ret = [ + reduce_add_epi32(zmm0.i128[0]), reduce_add_epi32(zmm1.i128[0]), reduce_add_epi32(zmm2.i128[0]), reduce_add_epi32(zmm3.i128[0]), + reduce_add_epi32(zmm0.i128[1]), reduce_add_epi32(zmm1.i128[1]), reduce_add_epi32(zmm2.i128[1]), reduce_add_epi32(zmm3.i128[1]), + reduce_add_epi32(zmm0.i128[2]), reduce_add_epi32(zmm1.i128[2]), reduce_add_epi32(zmm2.i128[2]), reduce_add_epi32(zmm3.i128[2]), + reduce_add_epi32(zmm0.i128[3]), reduce_add_epi32(zmm1.i128[3]), reduce_add_epi32(zmm2.i128[3]), reduce_add_epi32(zmm3.i128[3]) + ] + */ + [[maybe_unused]] static __m512i m512_hadd128x16_interleave( + __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3) { + + __m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1); + __m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1); + + __m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3); + __m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3); + + __m512i sum01 = _mm512_add_epi32(sum01a, sum01b); + __m512i sum23 = _mm512_add_epi32(sum23a, sum23b); + + __m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23); + __m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23); + + return _mm512_add_epi32(sum0123a, sum0123b); + } + + [[maybe_unused]] static __m128i m512_haddx4( + __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3, + __m128i bias) { + + __m512i sum = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3); + + __m256i sum256lo = _mm512_castsi512_si256(sum); + __m256i sum256hi = _mm512_extracti64x4_epi64(sum, 1); + + sum256lo = _mm256_add_epi32(sum256lo, sum256hi); + + __m128i sum128lo = _mm256_castsi256_si128(sum256lo); + __m128i sum128hi = _mm256_extracti128_si256(sum256lo, 1); + + return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias); + } + + [[maybe_unused]] static void m512_add_dpbusd_epi32( + __m512i& acc, + __m512i a, + __m512i b) { + +# if defined (USE_VNNI) +# if defined (USE_INLINE_ASM) + asm( + "vpdpbusd %[b], %[a], %[acc]\n\t" + : [acc]"+v"(acc) + : [a]"v"(a), [b]"vm"(b) + ); +# else + acc = _mm512_dpbusd_epi32(acc, a, b); +# endif +# else +# if defined (USE_INLINE_ASM) + __m512i tmp = _mm512_maddubs_epi16(a, b); + asm( + "vpmaddwd %[tmp], %[ones], %[tmp]\n\t" + "vpaddd %[acc], %[tmp], %[acc]\n\t" + : [acc]"+v"(acc) + : [tmp]"v"(tmp), [ones]"v"(_mm512_set1_epi16(1)) + ); +# else + __m512i product0 = _mm512_maddubs_epi16(a, b); + product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1)); + acc = _mm512_add_epi32(acc, product0); +# endif +# endif + } + + [[maybe_unused]] static void m512_add_dpbusd_epi32x2( + __m512i& acc, + __m512i a0, __m512i b0, + __m512i a1, __m512i b1) { + +# if defined (USE_VNNI) +# if defined (USE_INLINE_ASM) + asm( + "vpdpbusd %[b0], %[a0], %[acc]\n\t" + "vpdpbusd %[b1], %[a1], %[acc]\n\t" + : [acc]"+v"(acc) + : [a0]"v"(a0), [b0]"vm"(b0), [a1]"v"(a1), [b1]"vm"(b1) + ); +# else + acc = _mm512_dpbusd_epi32(acc, a0, b0); + acc = _mm512_dpbusd_epi32(acc, a1, b1); +# endif +# else +# if defined (USE_INLINE_ASM) + __m512i tmp0 = _mm512_maddubs_epi16(a0, b0); + __m512i tmp1 = _mm512_maddubs_epi16(a1, b1); + asm( + "vpaddsw %[tmp0], %[tmp1], %[tmp0]\n\t" + "vpmaddwd %[tmp0], %[ones], %[tmp0]\n\t" + "vpaddd %[acc], %[tmp0], %[acc]\n\t" + : [acc]"+v"(acc) + : [tmp0]"v"(tmp0), [tmp1]"v"(tmp1), [ones]"v"(_mm512_set1_epi16(1)) + ); +# else + __m512i product0 = _mm512_maddubs_epi16(a0, b0); + __m512i product1 = _mm512_maddubs_epi16(a1, b1); + product0 = _mm512_adds_epi16(product0, product1); + product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1)); + acc = _mm512_add_epi32(acc, product0); +# endif +# endif + } + +#endif + +#if defined (USE_AVX2) + + [[maybe_unused]] static int m256_hadd(__m256i sum, int bias) { + __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1)); + sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC)); + sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB)); + return _mm_cvtsi128_si32(sum128) + bias; + } + + [[maybe_unused]] static __m128i m256_haddx4( + __m256i sum0, __m256i sum1, __m256i sum2, __m256i sum3, + __m128i bias) { + + sum0 = _mm256_hadd_epi32(sum0, sum1); + sum2 = _mm256_hadd_epi32(sum2, sum3); + + sum0 = _mm256_hadd_epi32(sum0, sum2); + + __m128i sum128lo = _mm256_castsi256_si128(sum0); + __m128i sum128hi = _mm256_extracti128_si256(sum0, 1); + + return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias); + } + + [[maybe_unused]] static void m256_add_dpbusd_epi32( + __m256i& acc, + __m256i a, + __m256i b) { + +# if defined (USE_VNNI) +# if defined (USE_INLINE_ASM) + asm( + "vpdpbusd %[b], %[a], %[acc]\n\t" + : [acc]"+v"(acc) + : [a]"v"(a), [b]"vm"(b) + ); +# else + acc = _mm256_dpbusd_epi32(acc, a, b); +# endif +# else +# if defined (USE_INLINE_ASM) + __m256i tmp = _mm256_maddubs_epi16(a, b); + asm( + "vpmaddwd %[tmp], %[ones], %[tmp]\n\t" + "vpaddd %[acc], %[tmp], %[acc]\n\t" + : [acc]"+v"(acc) + : [tmp]"v"(tmp), [ones]"v"(_mm256_set1_epi16(1)) + ); +# else + __m256i product0 = _mm256_maddubs_epi16(a, b); + product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1)); + acc = _mm256_add_epi32(acc, product0); +# endif +# endif + } + + [[maybe_unused]] static void m256_add_dpbusd_epi32x2( + __m256i& acc, + __m256i a0, __m256i b0, + __m256i a1, __m256i b1) { + +# if defined (USE_VNNI) +# if defined (USE_INLINE_ASM) + asm( + "vpdpbusd %[b0], %[a0], %[acc]\n\t" + "vpdpbusd %[b1], %[a1], %[acc]\n\t" + : [acc]"+v"(acc) + : [a0]"v"(a0), [b0]"vm"(b0), [a1]"v"(a1), [b1]"vm"(b1) + ); +# else + acc = _mm256_dpbusd_epi32(acc, a0, b0); + acc = _mm256_dpbusd_epi32(acc, a1, b1); +# endif +# else +# if defined (USE_INLINE_ASM) + __m256i tmp0 = _mm256_maddubs_epi16(a0, b0); + __m256i tmp1 = _mm256_maddubs_epi16(a1, b1); + asm( + "vpaddsw %[tmp0], %[tmp1], %[tmp0]\n\t" + "vpmaddwd %[tmp0], %[ones], %[tmp0]\n\t" + "vpaddd %[acc], %[tmp0], %[acc]\n\t" + : [acc]"+v"(acc) + : [tmp0]"v"(tmp0), [tmp1]"v"(tmp1), [ones]"v"(_mm256_set1_epi16(1)) + ); +# else + __m256i product0 = _mm256_maddubs_epi16(a0, b0); + __m256i product1 = _mm256_maddubs_epi16(a1, b1); + product0 = _mm256_adds_epi16(product0, product1); + product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1)); + acc = _mm256_add_epi32(acc, product0); +# endif +# endif + } + +#endif + +#if defined (USE_SSSE3) + + [[maybe_unused]] static int m128_hadd(__m128i sum, int bias) { + sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC + sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB + return _mm_cvtsi128_si32(sum) + bias; + } + + [[maybe_unused]] static __m128i m128_haddx4( + __m128i sum0, __m128i sum1, __m128i sum2, __m128i sum3, + __m128i bias) { + + sum0 = _mm_hadd_epi32(sum0, sum1); + sum2 = _mm_hadd_epi32(sum2, sum3); + sum0 = _mm_hadd_epi32(sum0, sum2); + return _mm_add_epi32(sum0, bias); + } + + [[maybe_unused]] static void m128_add_dpbusd_epi32( + __m128i& acc, + __m128i a, + __m128i b) { + +# if defined (USE_INLINE_ASM) + __m128i tmp = _mm_maddubs_epi16(a, b); + asm( + "pmaddwd %[ones], %[tmp]\n\t" + "paddd %[tmp], %[acc]\n\t" + : [acc]"+v"(acc) + : [tmp]"v"(tmp), [ones]"v"(_mm_set1_epi16(1)) + ); +# else + __m128i product0 = _mm_maddubs_epi16(a, b); + product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1)); + acc = _mm_add_epi32(acc, product0); +# endif + } + + [[maybe_unused]] static void m128_add_dpbusd_epi32x2( + __m128i& acc, + __m128i a0, __m128i b0, + __m128i a1, __m128i b1) { + +# if defined (USE_INLINE_ASM) + __m128i tmp0 = _mm_maddubs_epi16(a0, b0); + __m128i tmp1 = _mm_maddubs_epi16(a1, b1); + asm( + "paddsw %[tmp1], %[tmp0]\n\t" + "pmaddwd %[ones], %[tmp0]\n\t" + "paddd %[tmp0], %[acc]\n\t" + : [acc]"+v"(acc) + : [tmp0]"v"(tmp0), [tmp1]"v"(tmp1), [ones]"v"(_mm_set1_epi16(1)) + ); +# else + __m128i product0 = _mm_maddubs_epi16(a0, b0); + __m128i product1 = _mm_maddubs_epi16(a1, b1); + product0 = _mm_adds_epi16(product0, product1); + product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1)); + acc = _mm_add_epi32(acc, product0); +# endif + } + +#endif + +} + +#endif // STOCKFISH_SIMD_H_INCLUDED