-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathLyra2.c
382 lines (320 loc) · 17.4 KB
/
Lyra2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/**
* Implementation of the Lyra2 Password Hashing Scheme (PHS).
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "Lyra2.h"
#include "Sponge.h"
/**
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits,
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols).
*
* @param K The derived key to be output by the algorithm
* @param kLen Desired key length
* @param pwd User password
* @param pwdlen Password length
* @param salt Salt
* @param saltlen Salt length
* @param timeCost Parameter to determine the processing time (T)
* @param nRows Number or rows of the memory matrix (R)
* @param nCols Number of columns of the memory matrix (C)
*
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
*/
int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols) {
//============================= Basic variables ============================//
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
int64_t i; //auxiliary iteration counter
//==========================================================================/
//========== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES);
uint64_t *wholeMatrix = malloc(i);
if (wholeMatrix == NULL) {
return -1;
}
memset(wholeMatrix, 0, i);
//Allocates pointers to each row of the matrix
uint64_t **memMatrix = malloc(nRows * sizeof (uint64_t*));
if (memMatrix == NULL) {
return -1;
}
//Places the pointers in the correct positions
uint64_t *ptrWord = wholeMatrix;
for (i = 0; i < nRows; i++) {
memMatrix[i] = ptrWord;
ptrWord += ROW_LEN_INT64;
}
//==========================================================================/
//============= Getting the password + salt + basil padded with 10*1 ===============//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
//but this ensures that the password copied locally will be overwritten as soon as possible
//First, we clean enough blocks for the password, salt, basil and padding
uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
byte *ptrByte = (byte*) wholeMatrix;
memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES);
//Prepends the password
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &pwdlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &saltlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &timeCost, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nRows, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nCols, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
//==========================================================================/
//======================= Initializing the Sponge State ====================//
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
uint64_t *state = malloc(16 * sizeof (uint64_t));
if (state == NULL) {
return -1;
}
initState(state);
//==========================================================================/
//================================ Setup Phase =============================//
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
ptrWord = wholeMatrix;
for (i = 0; i < nBlocksInput; i++) {
absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN_BLAKE2_SAFE_INT64; //goes to next block of pad(pwd || salt || basil)
}
//Initializes M[0] and M[1]
reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here
reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols);
do {
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
//updates the value of row* (deterministically picked during Setup))
rowa = (rowa + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa == 0) {
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//==========================================================================/
//============================ Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= timeCost; tau++) {
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
do {
//Selects a pseudorandom index row*
//------------------------------------------------------------------------------------------
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//------------------------------------------------------------------------------------------
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
} while (row != 0);
}
//==========================================================================/
//============================ Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock(state, memMatrix[rowa]);
//Squeezes the key
squeeze(state, K, kLen);
//==========================================================================/
//========================= Freeing the memory =============================//
free(memMatrix);
free(wholeMatrix);
//Wiping out the sponge's internal state before freeing it
memset(state, 0, 16 * sizeof (uint64_t));
free(state);
//==========================================================================/
return 0;
}
int LYRA2_old(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols) {
//============================= Basic variables ============================//
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
int64_t i; //auxiliary iteration counter
//==========================================================================/
//========== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES);
uint64_t *wholeMatrix = malloc(i);
if (wholeMatrix == NULL) {
return -1;
}
memset(wholeMatrix, 0, i);
//Allocates pointers to each row of the matrix
uint64_t **memMatrix = malloc(nRows * sizeof (uint64_t*));
if (memMatrix == NULL) {
return -1;
}
//Places the pointers in the correct positions
uint64_t *ptrWord = wholeMatrix;
for (i = 0; i < nRows; i++) {
memMatrix[i] = ptrWord;
ptrWord += ROW_LEN_INT64;
}
//==========================================================================/
//============= Getting the password + salt + basil padded with 10*1 ===============//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
//but this ensures that the password copied locally will be overwritten as soon as possible
//First, we clean enough blocks for the password, salt, basil and padding
uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
byte *ptrByte = (byte*) wholeMatrix;
memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES);
//Prepends the password
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &pwdlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &saltlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &timeCost, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nRows, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nCols, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
//==========================================================================/
//======================= Initializing the Sponge State ====================//
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
uint64_t *state = malloc(16 * sizeof (uint64_t));
if (state == NULL) {
return -1;
}
initState(state);
//==========================================================================/
//================================ Setup Phase =============================//
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
ptrWord = wholeMatrix;
for (i = 0; i < nBlocksInput; i++) {
absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN_BLAKE2_SAFE_BYTES; //goes to next block of pad(pwd || salt || basil)
}
//Initializes M[0] and M[1]
reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here
reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols);
do {
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
//updates the value of row* (deterministically picked during Setup))
rowa = (rowa + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa == 0) {
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//==========================================================================/
//============================ Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= timeCost; tau++) {
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
do {
//Selects a pseudorandom index row*
//------------------------------------------------------------------------------------------
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//------------------------------------------------------------------------------------------
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
} while (row != 0);
}
//==========================================================================/
//============================ Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock(state, memMatrix[rowa]);
//Squeezes the key
squeeze(state, K, kLen);
//==========================================================================/
//========================= Freeing the memory =============================//
free(memMatrix);
free(wholeMatrix);
//Wiping out the sponge's internal state before freeing it
memset(state, 0, 16 * sizeof (uint64_t));
free(state);
//==========================================================================/
return 0;
}