-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcrop.py
84 lines (66 loc) · 3 KB
/
crop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import cv2
import torch
from src.utils.logging import get_logger
from src.utils.bbox import BoundingBox
import torch.nn.functional as F
logger = get_logger(__name__)
class CropResizePad:
def __init__(self, target_size=224, patch_size=14):
self.target_size = target_size
self.patch_size = patch_size
def __call__(self, xyxy_boxes, images):
batch_size = xyxy_boxes.shape[0]
device = xyxy_boxes.device
bbox_sizes = BoundingBox(xyxy_boxes).get_box_size()
scales = self.target_size / torch.max(bbox_sizes, dim=-1)[0]
out_data = {"M": [], "images": []}
for i in range(batch_size):
image = images[i]
bbox, bbox_size, scale = xyxy_boxes[i], bbox_sizes[i], scales[i]
M_crop = torch.eye(3, device=device)
M_resize_pad = torch.eye(3, device=device)
# crop and scale
image = image[:, bbox[1] : bbox[3], bbox[0] : bbox[2]]
M_crop[:2, 2] = -bbox[:2]
image = F.interpolate(image.unsqueeze(0), scale_factor=scale.item())[0]
M_resize_pad[:2, :2] *= scale
if image.shape[-1] / image.shape[-2] != 1:
pad_top = (self.target_size - image.shape[-2]) // 2
pad_bottom = self.target_size - image.shape[-2] - pad_top
pad_bottom = max(pad_bottom, 0)
pad_left = (self.target_size - image.shape[-1]) // 2
pad_left = max(pad_left, 0)
pad_right = self.target_size - image.shape[-1] - pad_left
image = F.pad(image, [pad_left, pad_right, pad_top, pad_bottom])
M_resize_pad[:2, 2] = torch.tensor([pad_left, pad_top])
M = torch.matmul(M_resize_pad, M_crop)
# sometimes, 1 pixel is missing due to rounding, so interpolate again
image = F.interpolate(
image.unsqueeze(0), size=(self.target_size, self.target_size)
)[0]
out_data["M"].append(M)
out_data["images"].append(image)
out_data["M"] = torch.stack(out_data["M"])
out_data["images"] = torch.stack(out_data["images"])
return out_data
def forward_image_wrap(self, images, M):
images_np = images.permute(0, 2, 3, 1).cpu().numpy()
M_np = M.cpu().numpy()
new_images = [
cv2.warpAffine(
images_np[i], M_np[i][:2, :], (self.target_size, self.target_size)
)
for i in range(len(images))
]
assert len(new_images) != 0, f"Issue with warpAffine: {new_images}"
new_images = torch.from_numpy(np.stack(new_images)).to(images.device)
return new_images.permute(0, 3, 1, 2).float()
def crop_image(image, bbox, format="xyxy"):
if format == "xyxy":
image_cropped = image[bbox[1] : bbox[3], bbox[0] : bbox[2], :]
elif format == "xywh":
image_cropped = image[
bbox[1] : bbox[1] + bbox[3], bbox[0] : bbox[0] + bbox[2], :
]
return image_cropped