-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore_all.py
98 lines (85 loc) · 3.82 KB
/
score_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
import os
import json
import math
import random
from tqdm import tqdm
from scipy.stats import rankdata
from models import get_model
_SYSTEMS = ['AMU', 'CAMB', 'CUUI', 'IITB', 'INPUT', 'IPN', 'NTHU', \
'PKU', 'POST', 'RAC', 'SJTU', 'UFC', 'UMC']
# _SRC_NAME = 'INPUT'
def main(args):
systems = {}
if args.auto:
for filepath in os.listdir(args.data_dir):
system_name, _ = os.path.splitext(
os.path.basename(filepath))
with open(os.path.join(args.data_dir, filepath)) as f:
systems[system_name] = f.readlines()
else:
for system_name in _SYSTEMS:
filepath = os.path.join(args.data_dir, system_name)
with open(filepath) as f:
systems[system_name] = f.readlines()
if args.source_file is not None:
with open(args.source_file) as f:
systems[args.src_name] = f.readlines()
sources = systems[args.src_name]
model = get_model(args)
model.eval()
all_data = [{} for _ in sources]
for system_name, hyps in systems.items():
data_len = len(hyps)
num_iter = (data_len + args.batch_size - 1) // args.batch_size
for i in tqdm(range(num_iter)):
# get the QE score
b_start = i * args.batch_size
b_end = min(b_start + args.batch_size, data_len)
src = sources[b_start:b_end]
hyp = hyps[b_start:b_end]
scores = model.score(src, hyp)
if not isinstance(scores, list):
scores = scores.cpu().tolist()
if not isinstance(scores, list):
scores = [scores]
assert len(scores) == len(hyp)
if args.verbose:
r_idx = random.randrange(b_end - b_start)
print('===\nsrc: {}\nhyp: {}\nscore: {}\n'.format(
src[r_idx], hyp[r_idx], scores[r_idx]
))
for sc_id, sc in enumerate(scores):
if isinstance(sc, list):
sc = sc[0]
assert math.isnan(sc) or sc >= 0, "all QE score should be >= 0"
if math.isnan(sc):
scores[sc_id] = -1
s_id = b_start + sc_id
all_data[s_id][system_name] = {
'score': sc
}
for s_dict in all_data:
scores = [s['score'] for s in s_dict.values()]
sys_names = s_dict.keys()
asc_ranks = rankdata(scores, method='min')
max_rank = max(asc_ranks)
dsc_ranks = [int(max_rank - s + 1) for s in asc_ranks]
for sy_id, sys_info in enumerate(s_dict.values()):
sys_info['rank'] = dsc_ranks[sy_id]
with open(args.output_path, 'w', encoding='utf-8') as out:
json.dump(all_data, out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, required=True, help='XML file')
parser.add_argument('--output_path', type=str, help='Output path')
parser.add_argument('--source_file', type=str, help='Path to source texts')
parser.add_argument('--batch_size', type=int, default=16, help="batch size")
parser.add_argument('--src_name', default='INPUT', type=str, help='source name')
parser.add_argument('--model', default='greco', help='scorer name')
parser.add_argument('--lm_model', default=None, help='LM model name')
parser.add_argument('--checkpoint', default=None, help="path to the model's checkpoint")
parser.add_argument('--auto', default=False, action='store_true', help='read all files in the directory')
parser.add_argument('--verbose', default=False, action='store_true', help='verbose')
args = parser.parse_args()
main(args)