-
Notifications
You must be signed in to change notification settings - Fork 14
/
hosp_icu_deaths_forecast_plotter.py
148 lines (115 loc) · 5.82 KB
/
hosp_icu_deaths_forecast_plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import os
import pandas as pd
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import sys
sys.path.append('../')
from load_paths import load_box_paths
import matplotlib.dates as mdates
import seaborn as sns
from processing_helpers import *
mpl.rcParams['pdf.fonttype'] = 42
def parse_args():
description = "Simulation run for modeling Covid-19"
parser = argparse.ArgumentParser(description=description)
parser.add_argument(
"-stem",
"--stem",
type=str,
help="Name of simulation experiment"
)
parser.add_argument(
"-loc",
"--Location",
type=str,
help="Local or NUCLUSTER",
default="Local"
)
return parser.parse_args()
def plot_sim_and_ref(df, ems_nr, ref_df, channels, data_channel_names, titles, plot_name, region_label, first_day, last_day,
ymax=1000, logscale=False):
fig = plt.figure(figsize=(13, 4))
fig.subplots_adjust(left=0.07, right=0.97, top=2.95, bottom=0.05, hspace=0.25)
axes = [fig.add_subplot(1,3, x + 1) for x in range(len(channels))]
palette = sns.color_palette('husl', 8)
k = 0
for c, channel in enumerate(channels):
ax = axes[c]
mdf = df.groupby('date')[channel].agg([np.min, CI_50, CI_2pt5, CI_97pt5, CI_25, CI_75, np.max]).reset_index()
ax.plot(mdf['date'], mdf['CI_50'], color=palette[k])
ax.fill_between(mdf['date'], mdf['CI_2pt5'], mdf['CI_97pt5'],
color=palette[k], linewidth=0, alpha=0.2)
ax.fill_between(mdf['date'], mdf['CI_25'], mdf['CI_75'],
color=palette[k], linewidth=0, alpha=0.4)
ax.fill_between(mdf['date'], mdf['amin'], mdf['amax'],
color=palette[k], linewidth=0, alpha=0.1)
ax.grid(b=True, which='major', color='#999999', linestyle='-', alpha=0.3)
ax.set_title(titles[c], fontsize=12)
# ax.legend()
if logscale:
ax.set_ylim(0.1, ymax)
ax.set_yscale('log')
ax.plot(ref_df['date'], ref_df[data_channel_names[c]], 'o', color='#303030', linewidth=0, ms=1)
ax.plot(ref_df['date'], ref_df[data_channel_names[c]].rolling(window=7, center=True).mean(), c='k', alpha=1.0)
if channel == "hosp_det" or channel == "crit_det":
capacity = load_capacity(ems_nr)
if channel == "hosp_det":
capacitychannel = 'hosp_det'
if channel == "crit_det":
capacitychannel = 'crit_det'
ax.plot([first_plot_day,last_plot_day ], [capacity[capacitychannel], capacity[capacitychannel]], '--', linewidth=1, color='black')
ax.plot([first_plot_day,last_plot_day ], [capacity[capacitychannel] * 0.75, capacity[capacitychannel] * 0.75], '--', linewidth=0.8, color='grey')
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d\n%b'))
ax.set_xlim(first_day, last_day)
fig.suptitle(region_label, y=1.0, fontsize=14)
fig.tight_layout()
plot_name_full = plot_name + '_covidregion_' + str(ems_nr)
fig.subplots_adjust(top=0.8)
if logscale == False:
plot_name_full = plot_name_full + "_nolog"
plt.savefig(os.path.join(plot_path, plot_name_full + '.png'))
plt.savefig(os.path.join(plot_path, 'pdf', plot_name_full + '.pdf'), format='PDF')
def compare_ems(exp_name, plot_name, ems_nr, first_day , last_day):
if ems_nr == 0:
region_suffix = "_All"
region_label = 'Illinois'
else:
region_suffix = "_EMS-" + str(ems_nr)
region_label = region_suffix.replace('_EMS-', 'COVID-19 Region ')
column_list = ['time', 'startdate', 'scen_num', 'sample_num', 'run_num']
outcome_channels = ['hosp_det_cumul', 'hosp_cumul', 'hosp_det', 'hospitalized',
'crit_det_cumul', 'crit_cumul', 'crit_det', 'critical',
'deaths_det_cumul', 'deaths']
for channel in outcome_channels:
column_list.append(channel + region_suffix)
df = load_sim_data(exp_name, region_suffix=region_suffix, column_list=column_list)
df = df[df['date'].between(first_day, last_day)]
ref_df = load_ref_df(ems_nr)
ref_df = ref_df[ref_df['date'].between(first_day, last_day)]
channels = ['crit_det', 'hosp_det', 'new_deaths']
data_channel_names = ['confirmed_covid_icu', 'covid_non_icu', 'deaths']
titles = ['ICU census\n(EMR)', 'non-ICU inpatient census\n(EMR)','daily deaths\n(LL)']
#plot_sim_and_ref(df, ems_nr, ref_df, channels=channels, data_channel_names=data_channel_names, titles=titles,plot_name=plot_name,
# first_day=first_day, last_day=last_day, logscale=True)
plot_sim_and_ref(df, ems_nr, ref_df, channels=channels, data_channel_names=data_channel_names, titles=titles,plot_name=plot_name,
region_label=region_label, first_day=first_day, last_day=last_day, logscale=False)
# return ref_df_emr, ref_df_ll
if __name__ == '__main__':
args = parse_args()
stem = args.stem
Location = args.Location
first_plot_day = pd.Timestamp.today()- pd.Timedelta(60,'days')
last_plot_day = pd.Timestamp.today()+ pd.Timedelta(150,'days')
datapath, projectpath, wdir, exe_dir, git_dir = load_box_paths(Location=Location)
exp_names = [x for x in os.listdir(os.path.join(wdir, 'simulation_output')) if stem in x]
for exp_name in exp_names:
sim_output_path = os.path.join(wdir, 'simulation_output', exp_name)
plot_path = os.path.join(sim_output_path, '_plots')
"""Get group names"""
grp_list, grp_suffix, grp_numbers = get_group_names(exp_path=sim_output_path)
for grp_nr in grp_numbers:
print("Start processing region " + str(grp_nr))
compare_ems(exp_name, ems_nr=int(grp_nr), plot_name='forward_projection',
first_day=first_plot_day, last_day=last_plot_day)