This model presents a vehicle attributes classification algorithm for a traffic analysis scenario.
Metric | Value |
---|---|
Car pose | Front facing cars |
Occlusion coverage | <50% |
Min object width | 72 pixels |
Supported colors | White, gray, yellow, red, green, blue, black |
Supported types | Car, bus, truck, van |
GFlops | 0.126 |
MParams | 0.626 |
Source framework | Caffe* |
blue | gray | yellow | green | black | white | red | |
---|---|---|---|---|---|---|---|
blue | 79.53 | 4.32 | 0.62 | 6.41 | 6.54 | 2.47 | 0.12 |
gray | 2.53 | 78.01 | 0 | 1.36 | 1.18 | 16.74 | 0.18 |
yellow | 0 | 13.9 | 54.01 | 11.21 | 0 | 10.7 | 10.16 |
green | 3.79 | 1.52 | 1.52 | 83.33 | 6.06 | 3.03 | 0.76 |
black | 0.85 | 1.92 | 0 | 0.32 | 96.1 | 0.74 | 0.07 |
white | 1.45 | 10.86 | 0.17 | 2.53 | 0.08 | 84.83 | 0.08 |
red | 0.89 | 0.3 | 2.18 | 2.18 | 0.3 | 1.88 | 92.27 |
Color average accuracy: 81.15 %
car | van | truck | bus | |
---|---|---|---|---|
car | 98.26 | 0.56 | 0.98 | 0.2 |
van | 3.72 | 89.16 | 6.15 | 0.97 |
track | 1.71 | 2.46 | 94.27 | 1.56 |
bus | 7.94 | 3.8 | 19.69 | 68.57 |
Type average accuracy: 87.56 %
-
name:
input
, shape: [1x3x72x72] - An input image in following format [1xCxHxW], where:- C - number of channels
- H - image height
- W - image width
Expected color order: BGR.
- name: "color", shape: [1, 7, 1, 1] - Softmax output across seven color classes [white, gray, yellow, red, green, blue, black]
- name: "type", shape: [1, 4, 1, 1] - Softmax output across four type classes [car, bus, truck, van]
[*] Other names and brands may be claimed as the property of others.