-
Notifications
You must be signed in to change notification settings - Fork 0
/
dreamify.py
135 lines (107 loc) · 4.7 KB
/
dreamify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Based on dreamify.py from image-dreamer by Dhar (Gary Arnold)
# https://github.com/Dhar/image-dreamer
# itself based on the original code from Google
# https://github.com/google/deepdream
import numpy as np
import scipy.ndimage as nd
import PIL.Image
from google.protobuf import text_format
import caffe
import sys
import time
def load_net(name, bgr=False):
model_path = 'models/%s/' % name
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'model.caffemodel'
# Patching model to be able to compute gradients.
# Note that you can also manually add "force_backward: true" line to "deploy.prototxt".
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('tmp.prototxt', 'w').write(str(model))
kwargs = {}
if not bgr: # the reference model has channels in BGR order instead of RGB
kwargs['channel_swap'] = (2,1,0)
return caffe.Classifier('tmp.prototxt', param_fn,
mean = np.float32([104.0, 116.0, 122.0]),
# ImageNet mean, training set dependent
**kwargs)
# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
return np.dstack((img + net.transformer.mean['data'])[::-1])
def make_step(net, step_size=1.5, end='inception_4c/output', jitter=32,
clip=True):
'''Basic gradient ascent step.'''
src = net.blobs['data'] # input image is stored in Net's 'data' blob
dst = net.blobs[end]
ox, oy = np.random.randint(-jitter, jitter+1, 2)
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2)
# apply jitter shift
net.forward(end=end)
dst.diff[:] = dst.data # specify the optimization objective
net.backward(start=end)
g = src.diff[0]
# apply normalized ascent step to the input image
src.data[:] += step_size/np.abs(g).mean() * g
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2)
# unshift image
if clip:
bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)
def deepdream(net, base_img, iter_n=10, octave_n=4, octave_scale=1.4,
end='inception_4c/output', clip=True, callback=None,
**step_params):
starttime = time.time()
h0, w0 = base_img.shape[:2]
# prepare base images for all octaves
octaves = [preprocess(net, base_img)]
for i in xrange(octave_n-1):
octaves.append(nd.zoom(octaves[-1],
(1, 1.0/octave_scale,1.0/octave_scale),
order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1])
# allocate image for network-produced details
progress = 0
total_pixel_factor = sum(octave_scale ** (-2*i) for i in xrange(octave_n))
for octave, octave_base in enumerate(octaves[::-1]):
octave_pixel_factor = octave_scale ** (-2 * (octave_n - octave - 1))
progress_incr = octave_pixel_factor / total_pixel_factor / iter_n
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in xrange(iter_n):
stepstarttime = time.time()
make_step(net, end=end, clip=clip, **step_params)
# visualization
#vis = deprocess(net, src.data[0])
#if not clip: # adjust image contrast if clipping is disabled
# vis = vis*(255.0/np.percentile(vis, 99.98))
detail = src.data[0] - octave_base
h1, w1 = detail.shape[-2:]
scale_detail = nd.zoom(detail, (1, 1.0*h0/h1, 1.0*w0/w1), order=1)
vis = deprocess(net, scale_detail + octaves[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis*(255.0/np.percentile(vis, 99.98))
progress += progress_incr
if callback:
callback(progress=progress, image=vis)
#showarray(vis)
stependtime = time.time()
print octave, i, end, detail.shape, stependtime-stepstarttime, \
progress
# extract details produced on the current octave
#detail = src.data[0]-octave_base
# returning the resulting image
rv = deprocess(net, src.data[0])
endtime = time.time()
print
print endtime-starttime
print
return rv