forked from ageron/handson-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.yml
36 lines (36 loc) · 1.87 KB
/
environment.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
name: tf1
channels:
- conda-forge
- defaults
dependencies:
- atari_py=0.2 # used only in chapter 16
- box2d-py=2.3 # used only in chapter 16
- graphviz # used only in chapter 6 for dot files
- gym=0.18 # used only in chapter 16
- ipython=7.20 # a powerful Python shell
- joblib=0.14 # used only in chapter 2 to save/load Scikit-Learn models
- jupyter=1.0 # to edit and run Jupyter notebooks
- matplotlib=3.3 # beautiful plots. See tutorial tools_matplotlib.ipynb
- nbdime=2.1 # optional tool to diff Jupyter notebooks
- nltk=3.4 # optionally used in chapter 3, exercise 4
- numexpr=2.7 # used only in the Pandas tutorial for numerical expressions
- numpy=1.19 # Powerful n-dimensional arrays and numerical computing tools
- pandas=1.2 # data analysis and manipulation tool
- pillow=8.1 # image manipulation library, (used by matplotlib.image.imread)
- pip # Python's package-management system
- py-xgboost=0.90 # used only in chapter 7 for optimized Gradient Boosting
- pyglet=1.5 # used only in chapter 16 to render environments
- pyopengl=3.1 # used only in chapter 16 to render environments
- python=3.7 # Python! Not using latest version as some libs lack support
- python-graphviz # used only in chapter 6 for dot files
#- pyvirtualdisplay=1.3 # used only in chapter 16 if on headless server
- scikit-image=0.18.1 # used only in chapter 13 to resize images
- scikit-learn=0.24 # machine learning library
- scipy=1.6 # scientific/technical computing library
- transformers=4.3 # Natural Language Processing lib for TF or PyTorch
- wheel # built-package format for pip
- widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks
- pip:
- tensorboard==1.15.0 # TensorFlow's visualization toolkit
- tensorflow==1.15.5 # or tensorflow-gpu if you have a TF-compatible GPU
- urlextract==1.2.0 # optionally used in chapter 3, exercise 4