seed
: random seed for reproducibility.
checkpoint
: path to a checkpoint to load.
lr
: learning rate.
weight_decay
: weight decay.
optimizer_type
: optimizer type. Choose from adam
, lamb
, sgd
, adam_w
.
lr_schedulers_type
: learning rate scheduler type. Choose from step
, plateau
, cosine
, poly
.
differential_lr
: Whether to apply a learning rate multiplier to the backbone.
differential_lr_scaling
: LR multiplier for backbone.
x_range
, y_range
, z_range
: Range of the input point cloud.
voxel_size
: Voxel size of the input point cloud.
num_queries
: Number of queries for Mask2Former. Should be higher than the number of objects per scan.
predict_height
: Whether to predict the height of the objects.
pc_point_dim
: Number of dimensions of the input point cloud.
max_num_points
: Maximum number of points per voxel to keep at the encoder stage.
encoder_feat_channels
: Number of channels of the encoder features.
encoder_encoding_type
: Encoding type of the encoder. Choose from vanilla
, fourier
, cosine
.
encoder_fourier_enc_group
: Number of groups for the Fourier encoding.
backbone_embed_dim
: Embedding dimension of the backbone.
backbone_use_abs_emb
: Whether to use absolute positional embeddings in the backbone.
backbone_path_size
: Patch size of the Swin Transformer backbone.
backbone_window_size
: Window size of the Swin Transformer backbone.
backbone_strides
: Strides of the Swin Transformer backbone (int, int, int, int).
backbone_swap_dims
: Whether to swap the dimensions of the Swin Transformer backbone.
head_feat_channels
: Number of channels of the head features.
head_out_channels
: Number of channels of the head output.
head_reverse_class_weight
: Whether to reverse the class weight. This changes the default Mask2Former weighting of the
background class.
head_num_classes
: Number of classes of the head output.
min_num_inst_pixels
: Minimum number of pixels to keep an instance in the dataset.
batch_size
: Batch size.
test_batch_size
: Batch size for testing.
num_workers
: Number of workers for the data loader.
test_num_workers
: Number of workers for the data loader for testing.
pin_memory
: Whether to pin memory for the data loader.
remove_unseen
: Whether to remove instances that do not appear in a scan.
shuffle_train
: Whether to shuffle the training data.
min_num_points
: Minimum number of points to keep an instance in a scan.
log_every_n_step
: Logging frequency during training.
limit_train_batches
: Maximum number of batches to train on.
limit_val_batches
: Maximum number of batches to validate on.
Available augmentations are available in maskbev.augmentations
.
Select the ones you want using
augmentations:
- name: <augmentation name>
<augmentation parameters>
- name: <augmentation name>
<augmentation parameters>