-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathunet.py
112 lines (103 loc) · 4.83 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import tensorflow as tf
class UNet(object):
def __init__(self,
num_classes):
self.num_classes = num_classes
self.losses_list = []
def losses(self):
return self.losses_list
def _conv2d(self,
input_tensor,
num_outputs,
kernel_size=3,
stride=1,
padding='SAME',
dilation_rate=1,
stddev=0.09,
weight_decay=0.0004,
use_bias=False,
use_bn=True,
bn_momentum=0.997,
activation_fn=tf.nn.relu,
is_training=True,
scope=None):
net = input_tensor
kernel_initializer = tf.truncated_normal_initializer(stddev=stddev)
with tf.variable_scope(scope, default_name="conv"):
conv2d = tf.keras.layers.Conv2D(
filters=num_outputs,
kernel_size=kernel_size,
strides=stride,
padding=padding,
dilation_rate=dilation_rate,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
kernel_regularizer=tf.keras.regularizers.l2(weight_decay))
net = conv2d(net)
self.losses_list.extend(conv2d.losses)
if not use_bias and use_bn:
net = tf.layers.batch_normalization(
net,
momentum=bn_momentum,
training=is_training)
if activation_fn:
net = activation_fn(net)
return net
def _upsample(self,
input_tensors,
weight_decay=0.0004,
stddev=0.09,
scope=None):
with tf.variable_scope(scope, default_name="upsample"):
kernel_initializer = tf.truncated_normal_initializer(stddev=stddev)
input_depth = input_tensors[0].get_shape().as_list()[3]
conv2d_transpose = tf.keras.layers.Conv2DTranspose(
filters=(input_depth // 2),
kernel_size=[2, 2],
strides=[2, 2],
kernel_initializer=kernel_initializer,
kernel_regularizer=tf.keras.regularizers.l2(weight_decay),
use_bias=False)
net = conv2d_transpose(input_tensors[0])
self.losses_list.extend(conv2d_transpose.losses)
net = tf.keras.layers.Concatenate()([net, input_tensors[1]])
return net
def forward_pass(self, input_tensor, is_training=True):
with tf.variable_scope("Encoder", reuse=tf.AUTO_REUSE) as s, \
tf.name_scope(s.original_name_scope):
conv1 = self._conv2d(input_tensor, 16, is_training=is_training)
conv1 = self._conv2d(conv1, 16, is_training=is_training)
net = tf.keras.layers.MaxPool2D(pool_size=2, strides=2)(conv1)
conv2 = self._conv2d(net, 32, is_training=is_training)
conv2 = self._conv2d(conv2, 32, is_training=is_training)
net = tf.keras.layers.MaxPool2D(pool_size=2, strides=2)(conv2)
conv3 = self._conv2d(net, 64, is_training=is_training)
conv3 = self._conv2d(conv3, 64, is_training=is_training)
net = tf.keras.layers.MaxPool2D(pool_size=2, strides=2)(conv3)
conv4 = self._conv2d(net, 128, is_training=is_training)
conv4 = self._conv2d(conv4, 128, is_training=is_training)
net = tf.keras.layers.MaxPool2D(pool_size=2, strides=2)(conv4)
conv5 = self._conv2d(net, 256, is_training=is_training)
conv5 = self._conv2d(conv5, 256, is_training=is_training)
with tf.variable_scope("Decoder", reuse=tf.AUTO_REUSE) as s, \
tf.name_scope(s.original_name_scope):
net = self._upsample([conv5, conv4])
net = self._conv2d(net, 128, is_training=is_training)
net = self._conv2d(net, 128, is_training=is_training)
net = self._upsample([net, conv3])
net = self._conv2d(net, 64, is_training=is_training)
net = self._conv2d(net, 64, is_training=is_training)
net = self._upsample([net, conv2])
net = self._conv2d(net, 32, is_training=is_training)
net = self._conv2d(net, 32, is_training=is_training)
net = self._upsample([net, conv1])
net = self._conv2d(net, 16, is_training=is_training)
net = self._conv2d(net, 16, is_training=is_training)
outputs = self._conv2d(net,
self.num_classes,
kernel_size=1,
use_bias=True,
use_bn=False,
activation_fn=None,
is_training=is_training)
return outputs