This repository has been archived by the owner on Apr 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
/
lib.rs
285 lines (237 loc) · 10.5 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#![warn(unused_crate_dependencies)]
#![warn(unreachable_pub)]
//! This crate provides the implementation of BlackBox functions of ACIR and Brillig.
//! For functions that are backend-dependent, it provides a Trait [BlackBoxFunctionSolver] that must be implemented by the backend.
//! For functions that have a reference implementation, such as [keccak256], this crate exports the reference implementation directly.
use acir::{BlackBoxFunc, FieldElement};
use blake2::digest::generic_array::GenericArray;
use blake2::{Blake2s256, Digest};
use sha2::Sha256;
use sha3::Keccak256;
use thiserror::Error;
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum BlackBoxResolutionError {
#[error("unsupported blackbox function: {0}")]
Unsupported(BlackBoxFunc),
#[error("failed to solve blackbox function: {0}, reason: {1}")]
Failed(BlackBoxFunc, String),
}
/// This component will generate outputs for Blackbox function calls where the underlying [`acir::BlackBoxFunc`]
/// doesn't have a canonical Rust implementation.
///
/// Returns an [`BlackBoxResolutionError`] if the backend does not support the given [`acir::BlackBoxFunc`].
pub trait BlackBoxFunctionSolver {
fn schnorr_verify(
&self,
public_key_x: &FieldElement,
public_key_y: &FieldElement,
signature: &[u8],
message: &[u8],
) -> Result<bool, BlackBoxResolutionError>;
fn pedersen(
&self,
inputs: &[FieldElement],
domain_separator: u32,
) -> Result<(FieldElement, FieldElement), BlackBoxResolutionError>;
fn fixed_base_scalar_mul(
&self,
low: &FieldElement,
high: &FieldElement,
) -> Result<(FieldElement, FieldElement), BlackBoxResolutionError>;
}
pub fn sha256(inputs: &[u8]) -> Result<[u8; 32], BlackBoxResolutionError> {
generic_hash_256::<Sha256>(inputs)
.map_err(|err| BlackBoxResolutionError::Failed(BlackBoxFunc::SHA256, err))
}
pub fn blake2s(inputs: &[u8]) -> Result<[u8; 32], BlackBoxResolutionError> {
generic_hash_256::<Blake2s256>(inputs)
.map_err(|err| BlackBoxResolutionError::Failed(BlackBoxFunc::Blake2s, err))
}
pub fn keccak256(inputs: &[u8]) -> Result<[u8; 32], BlackBoxResolutionError> {
generic_hash_256::<Keccak256>(inputs)
.map_err(|err| BlackBoxResolutionError::Failed(BlackBoxFunc::Keccak256, err))
}
pub fn hash_to_field_128_security(inputs: &[u8]) -> Result<FieldElement, BlackBoxResolutionError> {
generic_hash_to_field::<Blake2s256>(inputs)
.map_err(|err| BlackBoxResolutionError::Failed(BlackBoxFunc::HashToField128Security, err))
}
pub fn ecdsa_secp256k1_verify(
hashed_msg: &[u8],
public_key_x: &[u8; 32],
public_key_y: &[u8; 32],
signature: &[u8; 64],
) -> Result<bool, BlackBoxResolutionError> {
Ok(verify_secp256k1_ecdsa_signature(hashed_msg, public_key_x, public_key_y, signature))
}
pub fn ecdsa_secp256r1_verify(
hashed_msg: &[u8],
public_key_x: &[u8; 32],
public_key_y: &[u8; 32],
signature: &[u8; 64],
) -> Result<bool, BlackBoxResolutionError> {
Ok(verify_secp256r1_ecdsa_signature(hashed_msg, public_key_x, public_key_y, signature))
}
/// Does a generic hash of the inputs returning the resulting 32 bytes separately.
fn generic_hash_256<D: Digest>(message: &[u8]) -> Result<[u8; 32], String> {
let output_bytes: [u8; 32] =
D::digest(message).as_slice().try_into().map_err(|_| "digest should be 256 bits")?;
Ok(output_bytes)
}
/// Does a generic hash of the entire inputs converting the resulting hash into a single output field.
fn generic_hash_to_field<D: Digest>(message: &[u8]) -> Result<FieldElement, String> {
let output_bytes: [u8; 32] =
D::digest(message).as_slice().try_into().map_err(|_| "digest should be 256 bits")?;
Ok(FieldElement::from_be_bytes_reduce(&output_bytes))
}
fn verify_secp256k1_ecdsa_signature(
hashed_msg: &[u8],
public_key_x_bytes: &[u8; 32],
public_key_y_bytes: &[u8; 32],
signature: &[u8; 64],
) -> bool {
use k256::elliptic_curve::sec1::FromEncodedPoint;
use k256::elliptic_curve::PrimeField;
use k256::{ecdsa::Signature, Scalar};
use k256::{
elliptic_curve::{
sec1::{Coordinates, ToEncodedPoint},
IsHigh,
},
AffinePoint, EncodedPoint, ProjectivePoint, PublicKey,
};
// Convert the inputs into k256 data structures
let signature = Signature::try_from(signature.as_slice()).unwrap();
let point = EncodedPoint::from_affine_coordinates(
public_key_x_bytes.into(),
public_key_y_bytes.into(),
true,
);
let pubkey = PublicKey::from_encoded_point(&point).unwrap();
let z = Scalar::from_repr(*GenericArray::from_slice(hashed_msg)).unwrap();
// Finished converting bytes into data structures
let r = signature.r();
let s = signature.s();
// Ensure signature is "low S" normalized ala BIP 0062
if s.is_high().into() {
return false;
}
let s_inv = s.invert().unwrap();
let u1 = z * s_inv;
let u2 = *r * s_inv;
#[allow(non_snake_case)]
let R: AffinePoint = ((ProjectivePoint::GENERATOR * u1)
+ (ProjectivePoint::from(*pubkey.as_affine()) * u2))
.to_affine();
match R.to_encoded_point(false).coordinates() {
Coordinates::Uncompressed { x, y: _ } => Scalar::from_repr(*x).unwrap().eq(&r),
_ => unreachable!("Point is uncompressed"),
}
}
fn verify_secp256r1_ecdsa_signature(
hashed_msg: &[u8],
public_key_x_bytes: &[u8; 32],
public_key_y_bytes: &[u8; 32],
signature: &[u8; 64],
) -> bool {
use p256::elliptic_curve::sec1::FromEncodedPoint;
use p256::elliptic_curve::PrimeField;
use p256::{ecdsa::Signature, Scalar};
use p256::{
elliptic_curve::{
sec1::{Coordinates, ToEncodedPoint},
IsHigh,
},
AffinePoint, EncodedPoint, ProjectivePoint, PublicKey,
};
// Convert the inputs into k256 data structures
let signature = Signature::try_from(signature.as_slice()).unwrap();
let point = EncodedPoint::from_affine_coordinates(
public_key_x_bytes.into(),
public_key_y_bytes.into(),
true,
);
let pubkey = PublicKey::from_encoded_point(&point).unwrap();
let z = Scalar::from_repr(*GenericArray::from_slice(hashed_msg)).unwrap();
// Finished converting bytes into data structures
let r = signature.r();
let s = signature.s();
// Ensure signature is "low S" normalized ala BIP 0062
if s.is_high().into() {
return false;
}
let s_inv = s.invert().unwrap();
let u1 = z * s_inv;
let u2 = *r * s_inv;
#[allow(non_snake_case)]
let R: AffinePoint = ((ProjectivePoint::GENERATOR * u1)
+ (ProjectivePoint::from(*pubkey.as_affine()) * u2))
.to_affine();
match R.to_encoded_point(false).coordinates() {
Coordinates::Uncompressed { x, y: _ } => Scalar::from_repr(*x).unwrap().eq(&r),
_ => unreachable!("Point is uncompressed"),
}
}
#[cfg(test)]
mod test {
use super::{verify_secp256k1_ecdsa_signature, verify_secp256r1_ecdsa_signature};
#[test]
fn verifies_valid_k1_signature_with_low_s_value() {
// 0x3a73f4123a5cd2121f21cd7e8d358835476949d035d9c2da6806b4633ac8c1e2,
let hashed_message: [u8; 32] = [
0x3a, 0x73, 0xf4, 0x12, 0x3a, 0x5c, 0xd2, 0x12, 0x1f, 0x21, 0xcd, 0x7e, 0x8d, 0x35,
0x88, 0x35, 0x47, 0x69, 0x49, 0xd0, 0x35, 0xd9, 0xc2, 0xda, 0x68, 0x06, 0xb4, 0x63,
0x3a, 0xc8, 0xc1, 0xe2,
];
// 0xa0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c7
let pub_key_x: [u8; 32] = [
0xa0, 0x43, 0x4d, 0x9e, 0x47, 0xf3, 0xc8, 0x62, 0x35, 0x47, 0x7c, 0x7b, 0x1a, 0xe6,
0xae, 0x5d, 0x34, 0x42, 0xd4, 0x9b, 0x19, 0x43, 0xc2, 0xb7, 0x52, 0xa6, 0x8e, 0x2a,
0x47, 0xe2, 0x47, 0xc7,
];
// 0x893aba425419bc27a3b6c7e693a24c696f794c2ed877a1593cbee53b037368d7
let pub_key_y: [u8; 32] = [
0x89, 0x3a, 0xba, 0x42, 0x54, 0x19, 0xbc, 0x27, 0xa3, 0xb6, 0xc7, 0xe6, 0x93, 0xa2,
0x4c, 0x69, 0x6f, 0x79, 0x4c, 0x2e, 0xd8, 0x77, 0xa1, 0x59, 0x3c, 0xbe, 0xe5, 0x3b,
0x03, 0x73, 0x68, 0xd7,
];
// 0xe5081c80ab427dc370346f4a0e31aa2bad8d9798c38061db9ae55a4e8df454fd28119894344e71b78770cc931d61f480ecbb0b89d6eb69690161e49a715fcd55
let signature: [u8; 64] = [
0xe5, 0x08, 0x1c, 0x80, 0xab, 0x42, 0x7d, 0xc3, 0x70, 0x34, 0x6f, 0x4a, 0x0e, 0x31,
0xaa, 0x2b, 0xad, 0x8d, 0x97, 0x98, 0xc3, 0x80, 0x61, 0xdb, 0x9a, 0xe5, 0x5a, 0x4e,
0x8d, 0xf4, 0x54, 0xfd, 0x28, 0x11, 0x98, 0x94, 0x34, 0x4e, 0x71, 0xb7, 0x87, 0x70,
0xcc, 0x93, 0x1d, 0x61, 0xf4, 0x80, 0xec, 0xbb, 0x0b, 0x89, 0xd6, 0xeb, 0x69, 0x69,
0x01, 0x61, 0xe4, 0x9a, 0x71, 0x5f, 0xcd, 0x55,
];
let valid =
verify_secp256k1_ecdsa_signature(&hashed_message, &pub_key_x, &pub_key_y, &signature);
assert!(valid)
}
#[test]
fn verifies_valid_r1_signature_with_low_s_value() {
// 0x54705ba3baafdbdfba8c5f9a70f7a89bee98d906b53e31074da7baecdc0da9ad
let hashed_message = [
84, 112, 91, 163, 186, 175, 219, 223, 186, 140, 95, 154, 112, 247, 168, 155, 238, 152,
217, 6, 181, 62, 49, 7, 77, 167, 186, 236, 220, 13, 169, 173,
];
// 0x550f471003f3df97c3df506ac797f6721fb1a1fb7b8f6f83d224498a65c88e24
let pub_key_x = [
85, 15, 71, 16, 3, 243, 223, 151, 195, 223, 80, 106, 199, 151, 246, 114, 31, 177, 161,
251, 123, 143, 111, 131, 210, 36, 73, 138, 101, 200, 142, 36,
];
// 0x136093d7012e509a73715cbd0b00a3cc0ff4b5c01b3ffa196ab1fb327036b8e6
let pub_key_y = [
19, 96, 147, 215, 1, 46, 80, 154, 115, 113, 92, 189, 11, 0, 163, 204, 15, 244, 181,
192, 27, 63, 250, 25, 106, 177, 251, 50, 112, 54, 184, 230,
];
// 0x2c70a8d084b62bfc5ce03641caf9f72ad4da8c81bfe6ec9487bb5e1bef62a13218ad9ee29eaf351fdc50f1520c425e9b908a07278b43b0ec7b872778c14e0784
let signature: [u8; 64] = [
44, 112, 168, 208, 132, 182, 43, 252, 92, 224, 54, 65, 202, 249, 247, 42, 212, 218,
140, 129, 191, 230, 236, 148, 135, 187, 94, 27, 239, 98, 161, 50, 24, 173, 158, 226,
158, 175, 53, 31, 220, 80, 241, 82, 12, 66, 94, 155, 144, 138, 7, 39, 139, 67, 176,
236, 123, 135, 39, 120, 193, 78, 7, 132,
];
let valid =
verify_secp256r1_ecdsa_signature(&hashed_message, &pub_key_x, &pub_key_y, &signature);
assert!(valid)
}
}