-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
154 lines (133 loc) · 5.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from argparse import ArgumentParser, Namespace
from math import ceil
import torch
from trainer import Trainer
from criterion import Loss
from evaluator import Evaluator
import clusterings
from utils.misc import get_dataset, get_lr_scheduler, get_model, set_seeds
from utils.visualizer import Visualizer
import wandb
def main(args: Namespace):
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
torch.backends.cudnn.benchmark = True
device: torch.device = torch.device("cuda:0")
set_seeds(seed=args.seed)
model = get_model(arch="maskformer", configs=args).to(device)
model.train()
dataset = get_dataset(
dir_dataset=args.dir_dataset,
dataset_name=args.dataset_name,
mode="train",
train_img_size=args.train_image_size,
eval_img_size=args.eval_image_size,
use_pseudo_masks=args.use_pseudo_masks,
k=args.k,
use_copy_paste=args.use_copy_paste,
scale_range=args.scale_range,
repeat_image=args.repeat_image,
n_percent=args.n_percent if args.dataset_name == "imagenet1k" else None,
n_copy_pastes=args.n_copy_pastes,
pseudo_masks_fp=args.pseudo_masks_fp
)
model = get_model(arch="maskformer", configs=args).to(device)
model.train()
optimizer = torch.optim.AdamW([
{
"params": [p for n, p in model.named_parameters() if p.requires_grad],
'lr': args.lr,
'weight_decay': args.weight_decay,
'momentum': args.momentum
}
])
n_samples: int = len(dataset)
n_iters_per_epoch = ceil(n_samples / args.batch_size)
warmup_iters = int(args.n_epochs * n_iters_per_epoch * args.lr_warmup_duration / 100)
lr_scheduler = get_lr_scheduler(
optimizer=optimizer, n_epochs=args.n_epochs, n_iters_per_epoch=n_iters_per_epoch, warmup_iters=warmup_iters
)
print(
f"\nLinear learning rate warmup for the first {warmup_iters} gradient iters "
f"({args.lr_warmup_duration}% of total training iters).\n"
)
if args.clustering_mode == "spectral":
clusterer = clusterings.SpectralClustering(use_gpu=args.use_gpu)
else:
clusterer = clusterings.KMeansClustering(use_gpu=args.use_gpu)
criterion = Loss(
weight_dice_loss=args.weight_dice_loss, weight_focal_loss=args.weight_focal_loss,
)
visualizer = Visualizer()
evaluator = Evaluator(
network=model,
dir_dataset=args.dir_dataset,
arch=args.arch,
visualizer=visualizer,
debug=args.debug,
)
trainer = Trainer(
dataset=dataset,
model=model,
criterion=criterion,
optimizer=optimizer,
clusterer=clusterer,
lr_scheduler=lr_scheduler,
evaluator=evaluator,
benchmarks=args.benchmarks,
seed=args.seed,
arch=args.arch,
training_method=args.training_method,
batch_size=args.batch_size,
dir_ckpt=args.dir_ckpt,
experim_name=args.experim_name,
k=args.k,
n_percent=args.n_percent if args.dataset_name == "imagenet1k" else None,
scale_factor=args.scale_factor,
eval_image_size=args.eval_image_size,
visualizer=visualizer,
debug=args.debug
)
trainer(args.n_epochs, device)
def define_experim_name(args: Namespace) -> str:
list_keywords = list()
list_keywords.append(f"nq{args.n_queries}_ndl{args.n_decoder_layers}")
list_keywords.append("bc") if args.use_binary_classifier else None
list_keywords.append("sup") if args.training_method == "supervised" else None
list_keywords.append("p16") if args.patch_size == 16 and args.arch == "vit_small" else None
list_keywords.append(f"sr{int(args.scale_range[0] * 100)}{int(args.scale_range[1] * 100)}")
list_keywords.append(args.dataset_name)
list_keywords.append("pm") if args.use_pseudo_masks else None
list_keywords.append(f"seed{args.seed}")
list_keywords.append(f"{args.suffix}") if args.suffix != '' else None
return '_'.join(list_keywords)
if __name__ == '__main__':
import os
import json
import yaml
from argparse import Namespace
parser = ArgumentParser("SelfMask")
parser.add_argument("--config", type=str, default="", required=True)
parser.add_argument("--debug", "-d", action="store_true")
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--overfitting", '-of', action="store_true", default=False)
parser.add_argument("--seed", "-s", default=0, type=int)
parser.add_argument("--suffix", type=str, default='')
args: Namespace = parser.parse_args()
base_args = yaml.safe_load(open(f"{args.config}", 'r'))
args: dict = vars(args)
args.update(base_args)
args: Namespace = Namespace(**args)
args.experim_name = define_experim_name(args)
args.dir_ckpt = f"{args.dir_ckpt}/{args.experim_name}"
os.makedirs(args.dir_ckpt, exist_ok=True)
json.dump(vars(args), open(f"{args.dir_ckpt}/config.json", 'w'), indent=2, sort_keys=True)
print(f"\n{args.dir_ckpt} is created.\n")
# Weights & biases
wandb.login()
wandb.init(
project=f"{args.experim_name}".replace(f"_seed{args.seed}", ''),
name=f"seed_{args.seed}"
)
wandb.config.update(args)
main(args)
wandb.finish()