Skip to content

Commit

Permalink
benchmark: make compare.R easier to understand
Browse files Browse the repository at this point in the history
PR-URL: #18373
Reviewed-By: Joyee Cheung <[email protected]>
Reviewed-By: James M Snell <[email protected]>
Reviewed-By: Ruben Bridgewater <[email protected]>
  • Loading branch information
AndreasMadsen authored and evanlucas committed Jan 30, 2018
1 parent 7b73e70 commit b5ec6ea
Showing 1 changed file with 49 additions and 12 deletions.
61 changes: 49 additions & 12 deletions benchmark/compare.R
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,21 @@ if (!is.null(plot.filename)) {
ggsave(plot.filename, p);
}

# computes the shared standard error, as used in the welch t-test
welch.sd = function (old.rate, new.rate) {
old.se.squared = var(old.rate) / length(old.rate)
new.se.squared = var(new.rate) / length(new.rate)
return(sqrt(old.se.squared + new.se.squared))
}

# calculate the improvement confidence interval. The improvement is calculated
# by dividing by old.mu and not new.mu, because old.mu is what the mean
# improvement is calculated relative to.
confidence.interval = function (shared.se, old.mu, w, risk) {
interval = qt(1 - (risk / 2), w$parameter) * shared.se;
return(sprintf("±%.2f%%", (interval / old.mu) * 100))
}

# Print a table with results
statistics = ddply(dat, "name", function(subdat) {
old.rate = subset(subdat, binary == "old")$rate;
Expand All @@ -45,33 +60,42 @@ statistics = ddply(dat, "name", function(subdat) {
new.mu = mean(new.rate);
improvement = sprintf("%.2f %%", ((new.mu - old.mu) / old.mu * 100));

p.value = NA;
confidence = 'NA';
r = list(
confidence = "NA",
improvement = improvement,
"accuracy (*)" = "NA",
"(**)" = "NA",
"(***)" = "NA"
);

# Check if there is enough data to calculate the calculate the p-value
if (length(old.rate) > 1 && length(new.rate) > 1) {
# Perform a statistics test to see of there actually is a difference in
# performance.
w = t.test(rate ~ binary, data=subdat);
p.value = w$p.value;
shared.se = welch.sd(old.rate, new.rate)

# Add user friendly stars to the table. There should be at least one star
# before you can say that there is an improvement.
confidence = '';
if (p.value < 0.001) {
if (w$p.value < 0.001) {
confidence = '***';
} else if (p.value < 0.01) {
} else if (w$p.value < 0.01) {
confidence = '**';
} else if (p.value < 0.05) {
} else if (w$p.value < 0.05) {
confidence = '*';
}

r = list(
confidence = confidence,
improvement = improvement,
"accuracy (*)" = confidence.interval(shared.se, old.mu, w, 0.05),
"(**)" = confidence.interval(shared.se, old.mu, w, 0.01),
"(***)" = confidence.interval(shared.se, old.mu, w, 0.001)
);
}

r = list(
improvement = improvement,
confidence = confidence,
p.value = p.value
);
return(data.frame(r));
return(data.frame(r, check.names=FALSE));
});


Expand All @@ -81,3 +105,16 @@ statistics$name = NULL;

options(width = 200);
print(statistics);
cat("\n")
cat(sprintf(
"Be aware that when doing many comparisions the risk of a false-positive
result increases. In this case there are %d comparisions, you can thus
expect the following amount of false-positive results:
%.2f false positives, when considering a 5%% risk acceptance (*, **, ***),
%.2f false positives, when considering a 1%% risk acceptance (**, ***),
%.2f false positives, when considering a 0.1%% risk acceptance (***)
",
nrow(statistics),
nrow(statistics) * 0.05,
nrow(statistics) * 0.01,
nrow(statistics) * 0.001))

0 comments on commit b5ec6ea

Please sign in to comment.