Skip to content

Commit

Permalink
benchmark: update docs after refactor
Browse files Browse the repository at this point in the history
PR-URL: #7094
Reviewed-By: Trevor Norris <[email protected]>
Reviewed-By: Jeremiah Senkpiel <[email protected]>
Reviewed-By: Brian White <[email protected]>
Reviewed-By: Anna Henningsen <[email protected]>
  • Loading branch information
AndreasMadsen committed Jul 26, 2016
1 parent 0c0f34e commit 6edef1d
Show file tree
Hide file tree
Showing 3 changed files with 240 additions and 95 deletions.
335 changes: 240 additions & 95 deletions benchmark/README.md
Original file line number Diff line number Diff line change
@@ -1,147 +1,292 @@
# Node.js core benchmark tests
# Node.js core benchmark

This folder contains benchmark tests to measure the performance for certain
Node.js APIs.
This folder contains benchmarks to measure the performance of the Node.js APIs.

## Table of Content

* [Prerequisites](#prerequisites)
* [Running benchmarks](#running-benchmarks)
* [Running individual benchmarks](#running-individual-benchmarks)
* [Running all benchmarks](#running-all-benchmarks)
* [Comparing node versions](#comparing-node-versions)
* [Comparing parameters](#comparing-parameters)
* [Creating a benchmark](#creating-a-benchmark)

## Prerequisites

Most of the http benchmarks require [`wrk`][wrk] and [`ab`][ab] (ApacheBench) being installed.
These may be available through your preferred package manager.
Most of the http benchmarks require [`wrk`][wrk] to be installed. It may be
available through your preferred package manager. If not, `wrk` can be built
[from source][wrk] via `make`.

If they are not available:
- `wrk` may easily be built [from source][wrk] via `make`.
- `ab` is sometimes bundled in a package called `apache2-utils`.
To analyze the results `R` should be installed. Check you package manager or
download it from https://www.r-project.org/.

The R packages `ggplot2` and `plyr` are also used and can be installed using
the R REPL.

```R
$ R
install.packages("ggplot2")
install.packages("plyr")
```

[wrk]: https://github.com/wg/wrk
[ab]: http://httpd.apache.org/docs/2.2/programs/ab.html

## How to run tests
## Running benchmarks

There are three ways to run benchmark tests:
### Running individual benchmarks

### Run all tests of a given type
This can be useful for debugging a benchmark or doing a quick performance
measure. But it does not provide the statistical information to make any
conclusions about the performance.

For example, buffers:
Individual benchmarks can be executed by simply executing the benchmark script
with node.

```bash
node benchmark/run.js buffers
```
$ node benchmark/buffers/buffer-tostring.js
The above command will find all scripts under `buffers` directory and require
each of them as a module. When a test script is required, it creates an instance
of `Benchmark` (a class defined in common.js). In the next tick, the `Benchmark`
constructor iterates through the configuration object property values and runs
the test function with each of the combined arguments in spawned processes. For
example, buffers/buffer-read.js has the following configuration:
buffers/buffer-tostring.js n=10000000 len=0 arg=true: 62710590.393305704
buffers/buffer-tostring.js n=10000000 len=1 arg=true: 9178624.591787899
buffers/buffer-tostring.js n=10000000 len=64 arg=true: 7658962.8891432695
buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 4136904.4060201733
buffers/buffer-tostring.js n=10000000 len=0 arg=false: 22974354.231509723
buffers/buffer-tostring.js n=10000000 len=1 arg=false: 11485945.656765845
buffers/buffer-tostring.js n=10000000 len=64 arg=false: 8718280.70650129
buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 4103857.0726124765
```

Each line represents a single benchmark with parameters specified as
`${variable}=${value}`. Each configuration combination is executed in a separate
process. This ensures that benchmark results aren't affected by the execution
order due to v8 optimizations. **The last number is the rate of operations
measured in ops/sec (higher is better).**

Furthermore you can specify a subset of the configurations, by setting them in
the process arguments:

```js
var bench = common.createBenchmark(main, {
noAssert: [false, true],
buffer: ['fast', 'slow'],
type: ['UInt8', 'UInt16LE', 'UInt16BE',
'UInt32LE', 'UInt32BE',
'Int8', 'Int16LE', 'Int16BE',
'Int32LE', 'Int32BE',
'FloatLE', 'FloatBE',
'DoubleLE', 'DoubleBE'],
millions: [1]
});
```
The runner takes one item from each of the property array value to build a list
of arguments to run the main function. The main function will receive the conf
object as follows:
$ node benchmark/buffers/buffer-tostring.js len=1024
- first run:
```js
{ noAssert: false,
buffer: 'fast',
type: 'UInt8',
millions: 1
}
buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 3498295.68561504
buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 3783071.1678948295
```
- second run:
```js
{
noAssert: false,
buffer: 'fast',
type: 'UInt16LE',
millions: 1
}

### Running all benchmarks

Similar to running individual benchmarks, a group of benchmarks can be executed
by using the `run.js` tool. Again this does not provide the statistical
information to make any conclusions.

```
$ node benchmark/run.js arrays
arrays/var-int.js
arrays/var-int.js n=25 type=Array: 71.90148040747789
arrays/var-int.js n=25 type=Buffer: 92.89648382795582
...
In this case, the main function will run 2*2*14*1 = 56 times. The console output
looks like the following:
arrays/zero-float.js
arrays/zero-float.js n=25 type=Array: 75.46208316171496
arrays/zero-float.js n=25 type=Buffer: 101.62785630273159
...
```
buffers//buffer-read.js
buffers/buffer-read.js noAssert=false buffer=fast type=UInt8 millions=1: 271.83
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16LE millions=1: 239.43
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16BE millions=1: 244.57
arrays/zero-int.js
arrays/zero-int.js n=25 type=Array: 72.31023859816062
arrays/zero-int.js n=25 type=Buffer: 90.49906662339653
...
```

The last number is the rate of operations. Higher is better.
It is possible to execute more groups by adding extra process arguments.
```
$ node benchmark/run.js arrays buffers
```

### Comparing node versions

To compare the effect of a new node version use the `compare.js` tool. This
will run each benchmark multiple times, making it possible to calculate
statistics on the performance measures.

As an example on how to check for a possible performance improvement, the
[#5134](https://github.com/nodejs/node/pull/5134) pull request will be used as
an example. This pull request _claims_ to improve the performance of the
`string_decoder` module.

First build two versions of node, one from the master branch (here called
`./node-master`) and another with the pull request applied (here called
`./node-pr-5135`).

The `compare.js` tool will then produce a csv file with the benchmark results.

```
$ node benchmark/compare.js --old ./node-master --new ./node-pr-5134 string_decoder > compare-pr-5134.csv
```

### Run an individual test
For analysing the benchmark results use the `compare.R` tool.

For example, buffer-slice.js:
```
$ cat compare-pr-5134.csv | Rscript benchmark/compare.R
```bash
node benchmark/buffers/buffer-read.js
improvement significant p.value
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-ascii 24.70 % *** 1.820615e-15
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-utf8 23.60 % *** 2.105625e-12
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=utf8 14.04 % *** 1.291105e-07
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii 6.70 % * 2.928003e-02
...
```
The output:

In the output, _improvement_ is the relative improvement of the new version,
hopefully this is positive. _significant_ tells if there is enough
statistical evidence to validate the _improvement_. If there is enough evidence
then there will be at least one star (`*`), more stars is just better. **However
if there are no stars, then you shouldn't make any conclusions based on the
_improvement_.** Sometimes this is fine, for example if you are expecting there
to be no improvements, then there shouldn't be any stars.

**A word of caution:** Statistics is not a foolproof tool. If a benchmark shows
a statistical significant difference, there is a 5% risk that this
difference doesn't actually exists. For a single benchmark this is not an
issue. But when considering 20 benchmarks it's normal that one of them
will show significance, when it shouldn't. A possible solution is to instead
consider at least two stars (`**`) as the threshold, in that case the risk
is 1%. If three stars (`***`) is considered the risk is 0.1%. However this
may require more runs to obtain (can be set with `--runs`).

_For the statistically minded, the R script performs an [independent/unpaired
2-group t-test][t-test], with the null hypothesis that the performance is the
same for both versions. The significant field will show a star if the p-value
is less than `0.05`._

[t-test]: https://en.wikipedia.org/wiki/Student%27s_t-test#Equal_or_unequal_sample_sizes.2C_unequal_variances

The `compare.R` tool can also produce a box plot by using the `--plot filename`
option. In this case there are 48 different benchmark combinations, thus you
may want to filter the csv file. This can be done while benchmarking using the
`--set` parameter (e.g. `--set encoding=ascii`) or by filtering results
afterwards using tools such as `sed` or `grep`. In the `sed` case be sure to
keep the first line since that contains the header information.

```
buffers/buffer-read.js noAssert=false buffer=fast type=UInt8 millions=1: 246.79
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16LE millions=1: 240.11
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16BE millions=1: 245.91
$ cat compare-pr-5134.csv | sed '1p;/encoding=ascii/!d' | Rscript benchmark/compare.R --plot compare-plot.png
improvement significant p.value
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii 6.70 % * 2.928003e-02
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=32 encoding=ascii 7.47 % *** 5.780583e-04
string_decoder/string-decoder.js n=250000 chunk=16 inlen=1024 encoding=ascii 8.94 % *** 1.788579e-04
string_decoder/string-decoder.js n=250000 chunk=16 inlen=128 encoding=ascii 10.54 % *** 4.016172e-05
...
```

### Run tests with options
![compare tool boxplot](doc_img/compare-boxplot.png)

### Comparing parameters

It can be useful to compare the performance for different parameters, for
example to analyze the time complexity.

To do this use the `scatter.js` tool, this will run a benchmark multiple times
and generate a csv with the results.

```
$ node benchmark/scatter.js benchmark/string_decoder/string-decoder.js > scatter.csv
```

After generating the csv, a comparison table can be created using the
`scatter.R` tool. Even more useful it creates an actual scatter plot when using
the `--plot filename` option.

This example will run only the first type of url test, with one iteration.
(Note: benchmarks require __many__ iterations to be statistically accurate.)
```
$ cat scatter.csv | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log
aggregating variable: inlen
```bash
node benchmark/url/url-parse.js type=one n=1
chunk encoding mean confidence.interval
16 ascii 1111933.3 221502.48
16 base64-ascii 167508.4 33116.09
16 base64-utf8 122666.6 25037.65
16 utf8 783254.8 159601.79
64 ascii 2623462.9 399791.36
64 base64-ascii 462008.3 85369.45
64 base64-utf8 420108.4 85612.05
64 utf8 1358327.5 235152.03
256 ascii 3730343.4 371530.47
256 base64-ascii 663281.2 80302.73
256 base64-utf8 632911.7 81393.07
256 utf8 1554216.9 236066.53
1024 ascii 4399282.0 186436.46
1024 base64-ascii 730426.6 63806.12
1024 base64-utf8 680954.3 68076.33
1024 utf8 1554832.5 237532.07
```
Output:

Because the scatter plot can only show two variables (in this case _chunk_ and
_encoding_) the rest is aggregated. Sometimes aggregating is a problem, this
can be solved by filtering. This can be done while benchmarking using the
`--set` parameter (e.g. `--set encoding=ascii`) or by filtering results
afterwards using tools such as `sed` or `grep`. In the `sed` case be
sure to keep the first line since that contains the header information.

```
url/url-parse.js type=one n=1: 1663.74402
$ cat scatter.csv | sed -E '1p;/([^,]+, ){3}128,/!d' | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log
chunk encoding mean confidence.interval
16 ascii 701285.96 21233.982
16 base64-ascii 107719.07 3339.439
16 base64-utf8 72966.95 2438.448
16 utf8 475340.84 17685.450
64 ascii 2554105.08 87067.132
64 base64-ascii 330120.32 8551.707
64 base64-utf8 249693.19 8990.493
64 utf8 1128671.90 48433.862
256 ascii 4841070.04 181620.768
256 base64-ascii 849545.53 29931.656
256 base64-utf8 809629.89 33773.496
256 utf8 1489525.15 49616.334
1024 ascii 4931512.12 165402.805
1024 base64-ascii 863933.22 27766.982
1024 base64-utf8 827093.97 24376.522
1024 utf8 1487176.43 50128.721
```

## How to write a benchmark test
![compare tool boxplot](doc_img/scatter-plot.png)

The benchmark tests are grouped by types. Each type corresponds to a subdirectory,
such as `arrays`, `buffers`, or `fs`.
## Creating a benchmark

Let's add a benchmark test for Buffer.slice function. We first create a file
buffers/buffer-slice.js.
All benchmarks use the `require('../common.js')` module. This contains the
`createBenchmark(main, configs)` method which will setup your benchmark.

### The code snippet
The first argument `main` is the benchmark function, the second argument
specifies the benchmark parameters. `createBenchmark` will run all possible
combinations of these parameters, unless specified otherwise. Note that the
configuration values can only be strings or numbers.

```js
var common = require('../common.js'); // Load the test runner
`createBenchmark` also creates a `bench` object, which is used for timing
the runtime of the benchmark. Run `bench.start()` after the initialization
and `bench.end(n)` when the benchmark is done. `n` is the number of operations
you performed in the benchmark.

var SlowBuffer = require('buffer').SlowBuffer;
```js
'use strict';
const common = require('../common.js');
const SlowBuffer = require('buffer').SlowBuffer;

// Create a benchmark test for function `main` and the configuration variants
var bench = common.createBenchmark(main, {
type: ['fast', 'slow'], // Two types of buffer
n: [512] // Number of times (each unit is 1024) to call the slice API
const bench = common.createBenchmark(main, {
n: [1024],
type: ['fast', 'slow'],
size: [16, 128, 1024]
});

function main(conf) {
// Read the parameters from the configuration
var n = +conf.n;
var b = conf.type === 'fast' ? buf : slowBuf;
bench.start(); // Start benchmarking
for (var i = 0; i < n * 1024; i++) {
// Add your test here
b.slice(10, 256);
bench.start();

const BufferConstructor = conf.type === 'fast' ? Buffer : SlowBuffer;

for (let i = 0; i < conf.n; i++) {
new BufferConstructor(conf.size);
}
bench.end(n); // End benchmarking
bench.end(conf.n);
}
```
Binary file added benchmark/doc_img/compare-boxplot.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added benchmark/doc_img/scatter-plot.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 6edef1d

Please sign in to comment.