-
Notifications
You must be signed in to change notification settings - Fork 0
/
output_parser_chunked.py
282 lines (212 loc) · 7.16 KB
/
output_parser_chunked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/python3
"""
Reads chunked strace output files and generates
analysis of machine learning accuracy using sklearn.
@author: Noah Frazier-Logue ([email protected])
"""
#print statements for debugging purposes
import numpy
from sklearn import *
import scipy
import re
from collections import Counter
import glob
import os.path
import time
from sklearn.metrics import confusion_matrix
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report
data_array = []
target_array = []
def read_files():
"""
Scans all subdirectories for text files and returns
them in a list.
@rtype: list
@return file_paths: list of file paths for use with
file_process, etc.
"""
file_paths = []
file_paths = glob.glob(
'/home/bearface/grive/Research/attribute_mining/chunked_files/*.txt')
return file_paths
def file_process(path):
"""
Opens the readout file of a command given 'cmd'
and returns a dictionary with system calls and
the number of times they're called
@type cmd: string
@param cmd: command to generate dictionary for.
@rtype: dictionary
@return counter_dict: dictionary containing
system calls and
corresponding counts.
"""
#opens file and reads lines to text
text = open(path, "r")
lines = text.readlines()
text.close()
#command_pattern = re.compile("[\w]+[(]")
array_size = 0
command_array = []
## for i in range(75):
## #regex to identify function calls
## result = re.search("[\w]+[(]", lines[i])
## #only adds to list if result is valid
## if result:
## command = (result.group()).replace("(", "")
## command_array.append(command)
##
for i in lines:
#regex to identify function calls
result = re.search("[\w]+[(]", i)
#only adds to list if result is valid
if result:
command = (result.group()).replace("(", "")
command_array.append(command)
#counter module creates dictionary
counter_dict = Counter(command_array)
#debug print
# for key, value in counter_dict.items():
# print(key, "-", value)
return counter_dict
def create_initial_array(file_paths):
"""
Creates array that contains combined system calls
of all commands passed in as arguments. This array
is to be used in the creation of the sklearn vector
later in the program.
Note: duplicates are removed from this array.
@rtype: list
@return initial_array: array containing system calls.
"""
initial_array = []
#appends each system command from all passed in
#commands given it's not already in the array
for path in file_paths:
temp_dict = file_process(path)
for key, value in temp_dict.items():
if key not in initial_array:
initial_array.append(key)
#sorts list alphabetically for clarity
initial_array = sorted(initial_array, key=str.lower)
# print(initial_array)
return initial_array
def get_file_names(file_paths):
"""
Parses file paths and returns file names for use
with id_num, etc.
@type file_paths: list
@param file_paths: list of file paths
@rtype: list
@return file_names: file names to be used in
id_tag, etc.
"""
file_names = []
for path in file_paths:
dir_name, file_ext = os.path.split(path)
file, extension = os.path.splitext(file_ext)
file_names.append(file)
return file_names
def id_tag(cmd):
"""
Generates unique id's for each file based on their
file names. For use with sklearn's machine
learning vector.
@type cmd: string
@param cmd: command to generate id for.
@rtype: integer
@return index: id number (index position) for
given command
"""
id_tag = cmd.partition("_")[0]
return id_tag
def create_vector(initial_array, file_paths):
"""
Creates vector containing count of each system call
for each command, followed by the id number for each
command. For use with sklearn.
@type initial_array: list
@param initial_array: array that contains system calls
to be tallied.
@rtype: list
@return sklearn_array: array to be used with sklearn
module.
"""
global data_array
global target_array
file_names = get_file_names(file_paths)
#completes all operations for each command
for i in range(len(file_names)):
index = file_names.index(file_names[i])
current_dict = file_process(file_paths[i])
key_array = []
value_array = []
#puts keys in key_array and values in value_array
for key, value in current_dict.items():
key_array.append(key)
value_array.append(value)
#creates empty nummber array to put command
#call counts in
vector_nums = [0] * len(initial_array)
#adds in same position as initial_array
for h in range(len(initial_array)):
for j in range(len(key_array)):
if key_array[j] == initial_array[h]:
vector_nums[h] = value_array[j]
# print(vector_nums)
id_num = id_tag(file_names[i])
#adds vector and id values to sklearn_array
#to made 3d array (the final vector)
data_array.append(vector_nums)
target_array.append(id_num)
# print(sklearn_array)
def sklearn_run(x, y):
"""
Uses sklearn module to analyze data and
print out results.
@type x: np.array
@param x: data vector in numpy array
@type y: list
@param y: id vector for use with np_data
"""
clf = svm.SVC(kernel='linear', probability=True, C = 1)
scores = cross_validation.cross_val_score(
clf, numpy.array(x),
numpy.array(y), cv = 5, scoring = 'accuracy')
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
print()
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0)
y_pred = clf.fit(x_train, y_train).predict(x_test)
cm = confusion_matrix(y_test, y_pred)
print(cm)
print()
predictions = clf.predict(x)
#print(predictions)
expected = y
print(classification_report(expected, predictions))
def main():
"""
Program driver; calls all functions in the order they
need to be called.
"""
global data_array
global target_array
print("Creating vector...")
start_time = time.time()
file_paths = read_files()
file_names = get_file_names(file_paths)
initial_array = create_initial_array(file_paths)
# print(initial_array)
sklearn_array = create_vector(initial_array, file_paths)
#creates numpy array
np_data = numpy.array(data_array)
np_target = numpy.array(target_array)
print("Done.")
print(np_data)
print(np_target)
sklearn_run(np_data, np_target)
total_time = time.time() - start_time
print("Time taken: " + str(total_time) + "s")
main()