-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
44 lines (42 loc) · 1.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from opts import parse_opts
from core.model import generate_model,generate_visual_Erase_model
from core.loss import get_loss
from core.optimizer import get_optim
from core.utils import local2global_path, get_spatial_transform
from core.dataset import get_training_set, get_validation_set, get_test_set, get_data_loader
from transforms.temporal import TSN
from transforms.target import ClassLabel
from train import train_epoch
from validation import val_epoch
from torch.cuda import device_count
from tensorboardX import SummaryWriter
def main():
opt = parse_opts()
opt.device_ids = list(range(device_count()))
local2global_path(opt)
model, parameters = generate_visual_Erase_model(opt)
criterion = get_loss(opt)
criterion = criterion.cuda()
optimizer = get_optim(opt, parameters)
writer = SummaryWriter(logdir=opt.log_path)
# train
spatial_transform = get_spatial_transform(opt, 'train')
temporal_transform = TSN(seq_len=opt.seq_len, snippet_duration=opt.snippet_duration, center=False)
target_transform = ClassLabel()
training_data = get_training_set(opt, spatial_transform, temporal_transform, target_transform)
train_loader = get_data_loader(opt, training_data, shuffle=True)
# validation
spatial_transform = get_spatial_transform(opt, 'test')
temporal_transform = TSN(seq_len=opt.seq_len, snippet_duration=opt.snippet_duration, center=False)
target_transform = ClassLabel()
validation_data = get_validation_set(opt, spatial_transform, temporal_transform, target_transform)
val_loader = get_data_loader(opt, validation_data, shuffle=False)
his = -1
for i in range(1, opt.n_epochs + 1):
train_epoch(i, train_loader, model, criterion, optimizer, opt, training_data.class_names, writer)
acc = val_epoch(i, val_loader, model, criterion, opt, writer, optimizer)
his = max(his, acc)
print('History Acc:', his)
writer.close()
if __name__ == "__main__":
main()