forked from niconielsen32/ComputerVision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObjectTrackingDeepSORT.py
156 lines (93 loc) · 4.11 KB
/
ObjectTrackingDeepSORT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import cv2
import numpy as np
import sys
import glob
import time
import torch
class YoloDetector():
def __init__(self, model_name):
self.model = self.load_model(model_name)
self.classes = self.model.names
#print(self.classes)
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Using Device: ", self.device)
def load_model(self, model_name):
if model_name:
model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_name, force_reload=True)
else:
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
return model
def score_frame(self, frame):
self.model.to(self.device)
downscale_factor = 2
width = int(frame.shape[1] / downscale_factor)
height = int(frame.shape[0] / downscale_factor)
frame = cv2.resize(frame, (width,height))
#frame = frame.to(self.device)
results = self.model(frame)
labels, cord = results.xyxyn[0][:, -1], results.xyxyn[0][:, :-1]
return labels, cord
def class_to_label(self, x):
return self.classes[int(x)]
def plot_boxes(self, results, frame, height, width, confidence=0.3):
labels, cord = results
detections = []
n = len(labels)
x_shape, y_shape = width, height
for i in range(n):
row = cord[i]
if row[4] >= confidence:
x1, y1, x2, y2 = int(row[0]*x_shape), int(row[1]*y_shape), int(row[2]*x_shape), int(row[3]*y_shape)
if self.class_to_label(labels[i]) == 'cup':
x_center = x1 + (x2 - x1)
y_center = y1 + ((y2 - y1) / 2)
tlwh = np.asarray([x1, y1, int(x2-x1), int(y2-y1)], dtype=np.float32)
confidence = float(row[4].item())
feature = 'person'
detections.append(([x1, y1, int(x2-x1), int(y2-y1)], row[4].item(), 'person'))
return frame, detections
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
detector = YoloDetector(model_name=None)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
from deep_sort_realtime.deepsort_tracker import DeepSort
object_tracker = DeepSort(max_age=5,
n_init=2,
nms_max_overlap=1.0,
max_cosine_distance=0.3,
nn_budget=None,
override_track_class=None,
embedder="mobilenet",
half=True,
bgr=True,
embedder_gpu=True,
embedder_model_name=None,
embedder_wts=None,
polygon=False,
today=None)
while cap.isOpened():
succes, img = cap.read()
start = time.perf_counter()
results = detector.score_frame(img)
img, detections = detector.plot_boxes(results, img, height=img.shape[0], width=img.shape[1], confidence=0.5)
tracks = object_tracker.update_tracks(detections, frame=img) # bbs expected to be a list of detections, each in tuples of ( [left,top,w,h], confidence, detection_class )
for track in tracks:
if not track.is_confirmed():
continue
track_id = track.track_id
ltrb = track.to_ltrb()
bbox = ltrb
cv2.rectangle(img,(int(bbox[0]), int(bbox[1])),(int(bbox[2]), int(bbox[3])),(0,0,255),2)
cv2.putText(img, "ID: " + str(track_id), (int(bbox[0]), int(bbox[1] - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
end = time.perf_counter()
totalTime = end - start
fps = 1 / totalTime
cv2.putText(img, f'FPS: {int(fps)}', (20,70), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,255,0), 2)
cv2.imshow('img',img)
if cv2.waitKey(1) & 0xFF == 27:
break
# Release and destroy all windows before termination
cap.release()
cv2.destroyAllWindows()