forked from rohitgarg025/Decoding_EEG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
feature_extraction_25gb_ram.py
467 lines (411 loc) · 15.7 KB
/
feature_extraction_25gb_ram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
# -*- coding: utf-8 -*-
"""feature_extraction_25GB_RAM.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1QnVj7GyyJhLPrYF4vBTppMwynXqmOTEJ
"""
# Commented out IPython magic to ensure Python compatibility.
import EEGExtract as eeg
from scipy import io,signal
import numpy as np
import pandas as pd
from sklearn import preprocessing
import pandas as pd
import pickle
class load_data:
'''
Load the preprocessed data here, store the paramters
'''
def __init__(self,name):
self.name = name #name of dataset
self.X = None
self.Y = None
self.Z = None
self.freq = None #(in Hz) is same for all datasets
self.channels = None
self.ch_type = 'eeg'
self.eegData = None
self.use_autoreject = 'n'
def load_arrays(self):
if self.name == 'DREAMER':
array = np.load('original_data/DREAMER.npz')
self.freq = 128
self.channels = ['AF3','F7','F3','FC5','T7','P7','O1','O2','P8','T8','FC6','F4','F8','AF4']
if self.name == 'DEAP':
array = np.load('original_data/DEAP.npz')
self.freq = 128
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
self.channels = ['F1', 'AF3', 'F3', 'F7', 'FC5', 'FC1', 'C3', 'T7', 'CP5', 'CP1', 'P3', 'P7', 'PO3', 'O1', 'Oz', 'Pz', 'Fp2', 'AF4', 'Fz', 'F4', 'F8', 'FC6', 'FC2', 'Cz', 'C4', 'T8', 'CP6', 'CP2', 'P4', 'P8', 'PO4', 'O2', 'hEOG','vEOG', 'zEMG','tEMG','GSR','Respiration belt','Plethysmograph','Temperature']
if self.name == 'OASIS':
#array = np.load('original_data/OASIS.npz')
if self.use_autoreject == 'y':
with open('preprocessed_data/oasis/with_autoreject.p','rb') as file:
self.X = pickle.load(file)
self.channels = ['AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1', 'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4']
self.freq = 128
self.X ,self.Y= merge_dictionary(self.X)
(a,b,c) = self.X.shape
self.X = np.reshape(self.X,(a,c,b))
else:
array = np.load('preprocessed_data/oasis/without_autoreject.npz')
self.freq = 128
self.channels = ['AF3','F7','F3','FC5','T7','P7','O1','O2','P8','T8','FC6','F4','F8','AF4']
self.X = array['X']
self.Y = array['Y']
(a,b,c) = self.X.shape
self.X = np.reshape(self.X,(a,c,b))
else:
self.X = array['X']
if self.name == 'DEAP':
self.X = self.X[:,:,[1,3,2,4,7,11,13,31,29,25,21,19,20,17]] # To maintain uniformity across all datasets, only 14 electrodes selected
self.channels = ['AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1', 'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4']
if self.name != 'OASIS':
self.Y = array['Y']
#self.Z = array['Z']
self.reshape_data()
def reshape_data(self):
'''
reshapes data in the format EEGExtract module expects i.e channels x timepoints x epochs
'''
(epochs,timepoints,channels) = self.X.shape
self.eegData = np.reshape(self.X,(channels,timepoints,epochs))
class features:
############################ Complexity Features #############################
#1>
@staticmethod
def ShannonRes(eegData,**args):
#Shannon Entropy
ShannonRes = eeg.shannonEntropy(eegData, bin_min=-200, bin_max=200, binWidth=2)
return ShannonRes
#2>
@staticmethod
def ShannonRes_sub_band_delta(eegData,fs):
# Subband Information Quantity
# delta (0.5–4 Hz)
eegData_delta = eeg.filt_data(eegData, 0.5, 4, fs)
ShannonRes_delta = eeg.shannonEntropy(eegData_delta, bin_min=-200, bin_max=200, binWidth=2)
return ShannonRes_delta
#3>
@staticmethod
def ShannonRes_sub_band_theta(eegData,fs):
# theta (4–8 Hz)
eegData_theta = eeg.filt_data(eegData, 4, 8, fs)
ShannonRes_theta = eeg.shannonEntropy(eegData_theta, bin_min=-200, bin_max=200, binWidth=2)
return ShannonRes_theta
#4>
@staticmethod
def ShannonRes_sub_band_alpha(eegData,fs):
# alpha (8–12 Hz)
eegData_alpha = eeg.filt_data(eegData, 8, 12, fs)
ShannonRes_alpha = eeg.shannonEntropy(eegData_alpha, bin_min=-200, bin_max=200, binWidth=2)
return ShannonRes_alpha
#5>
@staticmethod
def ShannonRes_sub_band_beta(eegData,fs):
# beta (12–30 Hz)
eegData_beta = eeg.filt_data(eegData, 12, 30, fs)
ShannonRes_beta = eeg.shannonEntropy(eegData_beta, bin_min=-200, bin_max=200, binWidth=2)
return ShannonRes_beta
#6>
@staticmethod
def ShannonRes_sub_band_gamma(eegData,fs):
# gamma (30–100 Hz)
eegData_gamma = eeg.filt_data(eegData, 30, 63, fs)
ShannonRes_gamma = eeg.shannonEntropy(eegData_gamma, bin_min=-200, bin_max=200, binWidth=2)
return ShannonRes_gamma
#7>
@staticmethod
def Hojorth_Mobility(eegData,**args):
# Hjorth Mobility
# Hjorth Complexity
HjorthMob, HjorthComp = eeg.hjorthParameters(eegData)
return HjorthMob
#8>
@staticmethod
def Hojorth_Complexity(eegData,**args):
# Hjorth Mobility
# Hjorth Complexity
HjorthMob, HjorthComp = eeg.hjorthParameters(eegData)
return HjorthComp
#9>
@staticmethod
def False_Nearest_Neighbour(eegData,**args):
# False Nearest Neighbor
FalseNnRes = eeg.falseNearestNeighbor(eegData)
return FalseNnRes
##############################################################################
########################Category Features#####################################
#10>
@staticmethod
def median_frequency(eegData,fs):
#fs-sampling frequency
# Median Frequency
medianFreqRes = eeg.medianFreq(eegData,fs)
return medianFreqRes
#11>
@staticmethod
def band_power_delta(eegData,fs):
#fs - sampling frequency
# δ band Power
bandPwr_delta = eeg.bandPower(eegData, 0.5, 4, fs)
return bandPwr_delta
#12>
@staticmethod
def band_power_theta(eegData,fs):
#fs - sampling frequency
# θ band Power
bandPwr_theta = eeg.bandPower(eegData, 4, 8, fs)
return bandPwr_theta
#13>
@staticmethod
def band_power_alpha(eegData,fs):
#fs - sampling frequency
# α band Power
bandPwr_alpha = eeg.bandPower(eegData, 8, 12, fs)
return bandPwr_alpha
#14>
@staticmethod
def band_power_beta(eegData,fs):
#fs - sampling frequency
# β band Power
bandPwr_beta = eeg.bandPower(eegData, 12, 30, fs)
return bandPwr_beta
#15>
@staticmethod
def band_power_gamma(eegData,fs):
#fs - sampling frequency
# γ band Power
bandPwr_gamma = eeg.bandPower(eegData, 30, 63, fs)
return bandPwr_gamma
#16>
@staticmethod
def standard_deviation(eegData,**args):
# Standard Deviation
std_res = eeg.eegStd(eegData)
return std_res
#17>
@staticmethod
def regularity(eegData,fs):
# Regularity (burst-suppression)
regularity_res = eeg.eegRegularity(eegData,fs)
return regularity_res
#18>
@staticmethod
def Diffuse_slowing(eegData,**args):
# Diffuse Slowing
df_res = eeg.diffuseSlowing(eegData)
return df_res
#19>
@staticmethod
def Spikes(eegData,fs,**args):
# Spikes
minNumSamples = int(70*fs/1000)
spikeNum_res = eeg.spikeNum(eegData,minNumSamples)
return spikeNum_res
#20>
@staticmethod
def delta_burst_after_spike(eegData,fs):
# Delta burst after Spike
eegData_delta = eeg.filt_data(eegData, 0.5, 4, fs)
deltaBurst_res = eeg.burstAfterSpike(eegData,eegData_delta,minNumSamples=7,stdAway = 3)
return deltaBurst_res
#21>
@staticmethod
def Sharp_spike(eegData,fs):
minNumSamples = int(70*fs/1000)
# Sharp spike
sharpSpike_res = eeg.shortSpikeNum(eegData,minNumSamples)
return sharpSpike_res
#22>
@staticmethod
def Number_of_Burst(eegData,fs):
# Number of Bursts
numBursts_res = eeg.numBursts(eegData,fs)
return numBursts_res
#23>
@staticmethod
def Burst_length_u_and_sigma_mean(eegData,fs):
# Burst length μ and σ
burstLenMean_res,burstLenStd_res = eeg.burstLengthStats(eegData,fs)
return burstLenMean_res
#24>
@staticmethod
def Burst_length_u_and_sigma_std(eegData,fs):
burstLenMean_res,burstLenStd_res = eeg.burstLengthStats(eegData,fs)
return burstLenStd_res
#25>
@staticmethod
def no_of_suprression(eegData,fs):
# Number of Suppressions
numSupps_res = eeg.numSuppressions(eegData,fs)
return numSupps_res
#26>
@staticmethod
def Suppression_length_u_and_sigma_mean(eegData,fs):
# Suppression length μ and σ
suppLenMean_res,suppLenStd_res = eeg.suppressionLengthStats(eegData,fs)
return suppLenMean_res
#27>
@staticmethod
def Suppression_length_u_and_sigma_std(eegData,fs):
# Suppression length μ and σ
suppLenMean_res,suppLenStd_res = eeg.suppressionLengthStats(eegData,fs)
return suppLenStd_res
##############################################################################
def merge_dictionary(dictionary):
'''
merge all trial data to form one array
'''
no_of_trials = len(list(dictionary.keys()))
no_of_channels = dictionary[1][0].shape[1]
length_of_segment = dictionary[1][0].shape[2]
no_of_epochs_per_trial = dictionary[1][0].shape[0]
X = np.empty((0,no_of_channels,length_of_segment))
Y = np.empty((0,2))
for trial,lst in dictionary.items():
array = dictionary[trial][0]
score = dictionary[trial][3]
X = np.append(X,array,axis = 0)
for epoch in range(no_of_epochs_per_trial):
Y = np.append(Y,np.expand_dims(score,axis =0),axis = 0)
return X,Y
def epoch_data(X,Y, window, stride, sfreq):
(channels,timepoints,trials )= X.shape
X = np.reshape(X,(trials,channels,timepoints))
segment = int(window*sfreq)
step = int(stride*sfreq)
epochPerTrial = int((timepoints-segment)/step + 1)
count = 0
X_new = np.empty((trials*epochPerTrial,channels,segment))
Y_new = np.empty((trials*epochPerTrial,2))
for trial in range(trials):
for epoch in range(epochPerTrial):
X_new[count,:,:] = X[trial,:,epoch*step:(epoch*step)+segment]
Y_new[count,:] = Y[trial,:2]
count+=1
(trials,channels,timepoints) = X_new.shape
X_new = np.reshape(X_new,(channels,timepoints,trials))
return X_new,Y_new
def driver_code():
dataset_dictionary = {0:'DEAP',1:'OASIS',2:'DREAMER'}
print(dataset_dictionary)
print('enter number for loading dataset')
mapping = int(input())
print('plz wait loading dataset preprocessed arrays')
dataset = load_data(dataset_dictionary[mapping])
if mapping == 1:
print('do you want to use with autoreject data? if yes press y')
boolean = input()
if boolean == 'y':
dataset.use_autoreject = 'y'
dataset.load_arrays()
print('loading complete')
print('shape of data we will use to make features:',dataset.eegData.shape)
print('do you want to segment the data before calculating feature values? y/n')
boolean = input()
if boolean == 'y':
window = float(input('enter window size'))
stride = float(input('enter stride size'))
dataset.eegData,dataset.Y = epoch_data(dataset.eegData,dataset.Y,window,stride,dataset.freq)
print('new shapes of X and Y:',dataset.eegData.shape,' ',dataset.Y.shape)
else:
window = 0
stride = 0
print('features available')
featuresDict = {0:'shannonEntropy',
1:'ShannonRes_sub_bands_alpha',
2:'ShannonRes_sub_bands_beta',
3:'ShannonRes_sub_bands_delta',
4:'ShannonRes_sub_bands_theta',
5:'ShannonRes_sub_bands_gamma',
6:'Hjorth_mobilty',
7:'Hjorth_complexity',
8:'falseNearestNeighbor',
9:'medianFreq',
10:'bandPwr_alpha',
11:'bandPwr_beta',
12:'bandPwr_gamma',
13:'bandPwr_theta',
14:'bandPwr_delta',
15:'stdDev',
16:'diffuseSlowing',
17:'spikeNum',
18:'deltaBurstAfterSpike',
19:'shortSpikeNum',
20:'Sharp spike',
21:'numBursts',
22:'burstLen_u_and_sigma_mean',
23:'burstLen_u_and_sigma_std',
24:'numSuppressions',
25:'suppressionLen_u_and_sigma_mean',
26:'suppressionLen_u_and_sigma_std',
}
featureMethod={0:features.ShannonRes,
1:features.ShannonRes_sub_band_alpha,
2:features.ShannonRes_sub_band_beta,
3:features.ShannonRes_sub_band_delta,
4:features.ShannonRes_sub_band_theta,
5:features.ShannonRes_sub_band_gamma,
6:features.Hojorth_Mobility,
7:features.Hojorth_Complexity,
8:features.False_Nearest_Neighbour,
9:features.median_frequency,
10:features.band_power_alpha,
11:features.band_power_beta,
12:features.band_power_gamma,
13:features.band_power_theta,
14:features.band_power_delta,
15:features.standard_deviation,
16:features.regularity,
17:features.Diffuse_slowing,
18:features.Spikes,
19:features.delta_burst_after_spike,
20:features.Sharp_spike,
21:features.Number_of_Burst,
22:features.Burst_length_u_and_sigma_mean,
23:features.Burst_length_u_and_sigma_std,
24:features.no_of_suprression,
25:features.Suppression_length_u_and_sigma_mean,
26:features.Suppression_length_u_and_sigma_std,
}
print(featuresDict)
#define path for saving before hand in np.savez line below
path = 'features/'
#os.mkdir('features/'+window+'_'+stride)
if dataset.name == 'DEAP':
path = path +'deap/'
elif dataset.name == 'DREAMER':
path = path + 'dreamer/'
else:
if dataset.use_autoreject == 'y':
path = path +'oasis/with_autoreject/'
else:
path = path +'oasis/without_autoreject/'
boolean = input('do you want to individually make features? y/n')
if boolean =='n':
for key in featureMethod.keys():
feature_matrix = featureMethod[key](eegData = dataset.eegData,fs=dataset.freq)
filename = featuresDict[key]
print('saving ---',filename)
np.savez(path+filename+'_'+str(int(window))+'_'+str(int(stride)),features = feature_matrix , Y = dataset.Y)
else:
found_features = False
while not found_features:
print('enter feature no')
key = int(input())
feature_matrix = featureMethod[key](eegData = dataset.eegData,fs=dataset.freq)
filename = featuresDict[key]
print('saving ---',filename)
np.savez(path+filename+'_'+str(int(window))+'_'+str(int(stride)),features = feature_matrix , Y = dataset.Y)
boolean = input('do you want to find more features? y/n ')
if boolean =='n':
found_features = True
print('feature extraction done!!!!')
def __main__():
driver_code()
__main__()
if __name__ == 'main':
driver_code()