forked from rohitgarg025/Decoding_EEG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
feature_extraction_25GB_RAM_DASM_RASM.py
319 lines (232 loc) · 10.7 KB
/
feature_extraction_25GB_RAM_DASM_RASM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
get_ipython().system('git clone -l -s https://github.com/sari-saba-sadiya/EEGExtract.git cloned-repo')
get_ipython().run_line_magic('cd', 'cloned-repo')
get_ipython().system('ls')
# In[ ]:
get_ipython().system('pip install -r requirements.txt')
# In[ ]:
from google.colab import drive
drive.mount('/gdrive',force_remount=True)
# In[ ]:
get_ipython().system('pip install pyinform')
# In[ ]:
get_ipython().run_line_magic('cd', '../../gdrive/MyDrive/emotion_recognition_project')
# In[ ]:
import EEGExtract as eeg
from scipy import io,signal
import numpy as np
import pandas as pd
from sklearn import preprocessing
import pandas as pd
import pickle
import matplotlib.pyplot as plt
# In[ ]:
class load_data:
'''
Load the preprocessed data here, store the paramters
'''
def __init__(self,name):
self.name = name #name of dataset
self.X = None
self.Y = None
self.Z = None
self.freq = None #(in Hz) is same for all datasets
self.channels = None
self.ch_type = 'eeg'
self.eegData = None
self.use_autoreject = 'y'
self.no_of_subjects = None
def load_arrays(self):
if self.name == 'DREAMER':
array = np.load('original_data/DREAMER.npz')
self.freq = 128
self.no_of_subjects = 23
self.channels = ['AF3','F7','F3','FC5','T7','P7','O1','O2','P8','T8','FC6','F4','F8','AF4']
if self.name == 'DEAP':
array = np.load('original_data/DEAP.npz')
self.no_of_subjects = 32
self.freq = 128
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
self.channels = ['F1', 'AF3', 'F3', 'F7', 'FC5', 'FC1', 'C3', 'T7', 'CP5', 'CP1', 'P3', 'P7', 'PO3', 'O1', 'Oz', 'Pz', 'Fp2', 'AF4', 'Fz', 'F4', 'F8', 'FC6', 'FC2', 'Cz', 'C4', 'T8', 'CP6', 'CP2', 'P4', 'P8', 'PO4', 'O2', 'hEOG','vEOG', 'zEMG','tEMG','GSR','Respiration belt','Plethysmograph','Temperature']
if self.name == 'OASIS':
#array = np.load('original_data/OASIS.npz')
self.no_of_subjects = 15
if self.use_autoreject == 'y':
with open('preprocessed_data/oasis/with_autoreject.p','rb') as file:
self.X = pickle.load(file)
self.channels = ['AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1', 'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4']
self.freq = 128
self.X ,self.Y= merge_dictionary(self.X)
(a,b,c) = self.X.shape
self.X = np.reshape(self.X,(a,c,b))
else:
array = np.load('preprocessed_data/oasis/without_autoreject.npz')
self.freq = 128
self.channels = ['AF3','F7','F3','FC5','T7','P7','O1','O2','P8','T8','FC6','F4','F8','AF4']
self.X = array['X']
self.Y = array['Y']
(a,b,c) = self.X.shape
self.X = np.reshape(self.X,(a,c,b))
else:
self.X = array['X']
if self.name == 'DEAP':
self.X = self.X[:,:,[1,3,2,4,7,11,13,31,29,25,21,19,20,17]] # To maintain uniformity across all datasets, only 14 electrodes selected
self.channels = ['AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1', 'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4']
if self.name != 'OASIS':
self.Y = array['Y']
#self.Z = array['Z']
self.reshape_data()
def reshape_data(self):
'''
reshapes data in the format EEGExtract module expects i.e channels x timepoints x epochs
'''
(epochs,timepoints,channels) = self.X.shape
self.eegData = np.reshape(self.X,(channels,timepoints,epochs))
# In[ ]:
def merge_dictionary(dictionary):
'''
merge all trial data to form one array
'''
no_of_trials = len(list(dictionary.keys()))
no_of_channels = dictionary[1][0].shape[1]
length_of_segment = dictionary[1][0].shape[2]
no_of_epochs_per_trial = dictionary[1][0].shape[0]
X = np.empty((0,no_of_channels,length_of_segment))
Y = np.empty((0,2))
for trial,lst in dictionary.items():
array = dictionary[trial][0]
score = dictionary[trial][3]
X = np.append(X,array,axis = 0)
for epoch in range(no_of_epochs_per_trial):
Y = np.append(Y,np.expand_dims(score,axis =0),axis = 0)
return X,Y
# In[ ]:
def calculate_diffrential_entropy_for_bands(eegData,freq):
# Function to calculate the differential entropy for the different bands of EEG data
# parameters :-
# eegData :- The differential EEG signal value
# freq :- sampling frequency of the EEG signal
# returns :-
# bandwise DE
#delta band
delta_band = eeg.filt_data(eegData,0.5,4,freq)
#theta band
theta_band = eeg.filt_data(eegData,4,8,freq)
#alpha bad
alpha_band = eeg.filt_data(eegData,8,12,freq)
#beta band
beta_band = eeg.filt_data(eegData,12,30,freq)
#gamma band
gamma_band = eeg.filt_data(eegData,30,63,freq)
diffrential_entropy_delta = 1/2*np.log(np.var(delta_band,axis = 1)*np.pi*np.e*2)
diffrential_entropy_theta = 1/2*np.log(np.var(theta_band,axis = 1)*np.pi*np.e*2)
diffrential_entropy_alpha = 1/2*np.log(np.var(alpha_band,axis = 1)*np.pi*np.e*2)
diffrential_entropy_beta = 1/2*np.log(np.var(beta_band,axis = 1)*np.pi*np.e*2)
diffrential_entropy_gamma = 1/2*np.log(np.var(gamma_band,axis = 1)*np.pi*np.e*2)
#print(diffrential_entropy_delta.shape,diffrential_entropy_gamma.shape,diffrential_entropy_theta.shape,diffrential_entropy_alpha.shape,diffrential_entropy_beta.shape)
return diffrential_entropy_delta,diffrential_entropy_theta,diffrential_entropy_alpha,diffrential_entropy_beta,diffrential_entropy_gamma
# In[ ]:
#['AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1', 'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4']
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13
def calculate_RASM_DASM(band):
RASM_AF3_AF4 = np.expand_dims(band[0,:]/band[13,:],axis = 0)
RASM_F3_F4 = np.expand_dims(band[2,:]/band[11,:],axis = 0)
RASM_F7_F8 = np.expand_dims(band[1,:]/band[12,:],axis = 0)
RASM_FC5_FC6 = np.expand_dims(band[3,:]/band[10,:],axis = 0)
RASM_O1_O2 = np.expand_dims(band[6,:]/band[7,:],axis = 0)
RASM_P7_P8 = np.expand_dims(band[5,:]/band[8,:],axis=0)
RASM_T7_T8 = np.expand_dims(band[4,:]/band[9,:],axis=0)
DASM_AF3_AF4 = np.expand_dims(band[0,:]-band[13,:],axis = 0)
DASM_F3_F4 = np.expand_dims(band[2,:]-band[11,:],axis = 0)
DASM_F7_F8 = np.expand_dims(band[1,:]-band[12,:],axis = 0)
DASM_FC5_FC6 = np.expand_dims(band[3,:]-band[10,:],axis = 0)
DASM_O1_O2 = np.expand_dims(band[6,:]-band[7,:],axis = 0)
DASM_P7_P8 = np.expand_dims(band[5,:]-band[8,:],axis=0)
DASM_T7_T8 = np.expand_dims(band[4,:]-band[9,:],axis=0)
features = np.empty((0,RASM_AF3_AF4.shape[1]))
features = np.append(features,RASM_AF3_AF4,axis = 0)
features = np.append(features,RASM_F3_F4,axis = 0)
features = np.append(features,RASM_F7_F8,axis = 0)
features = np.append(features,RASM_FC5_FC6,axis = 0)
features = np.append(features,RASM_O1_O2,axis = 0)
features = np.append(features,RASM_P7_P8,axis = 0)
features = np.append(features,RASM_T7_T8,axis = 0)
features = np.append(features,DASM_AF3_AF4,axis = 0)
features = np.append(features,DASM_F3_F4,axis = 0)
features = np.append(features,DASM_F7_F8,axis = 0)
features = np.append(features,DASM_FC5_FC6,axis = 0)
features = np.append(features,DASM_O1_O2,axis = 0)
features = np.append(features,DASM_P7_P8,axis = 0)
features = np.append(features,DASM_T7_T8,axis = 0)
return features.T
# In[ ]:
def epoch_data(X,Y, window, stride, sfreq):
(channels,timepoints,trials )= X.shape
X = np.reshape(X,(trials,channels,timepoints))
segment = int(window*sfreq)
step = int(stride*sfreq)
epochPerTrial = int((timepoints-segment)/step + 1)
count = 0
X_new = np.empty((trials*epochPerTrial,channels,segment))
Y_new = np.empty((trials*epochPerTrial,2))
for trial in range(trials):
for epoch in range(epochPerTrial):
X_new[count,:,:] = X[trial,:,epoch*step:(epoch*step)+segment]
Y_new[count,:] = Y[trial,:2]
count+=1
(trials,channels,timepoints) = X_new.shape
X_new = np.reshape(X_new,(channels,timepoints,trials))
return X_new,Y_new
# In[ ]:
def segregate_data_of_subjects(feature_matrix,dataset,sfreq = 128):
total_samples = feature_matrix.shape[0]
subject_indexes = {}
if dataset.name != 'DEAP AND DREAMER':
samples_per_subject = total_samples//dataset.no_of_subjects
print('samples per subject taken are ',samples_per_subject)
subject_indexes = {}
for i in range(dataset.no_of_subjects):
subject_name = 'subject_' + str(i+1)
subject_indexes[subject_name] = feature_matrix[samples_per_subject*i:samples_per_subject*(i+1),:]
else:
a = feature_matrix[:80640,:]
b = feature_matrix[80640:,:]
print(b.shape)
for i in range(32):
samples_per_subject = 2520
subject_name = 'subject_' + str(i+1)
subject_indexes[subject_name] = a[samples_per_subject*i:samples_per_subject*(i+1),:]
for i in range(0,23):
samples_per_subject = 8190
subject_name = 'subject_' + str(i+1+32)
subject_indexes[subject_name] = b[samples_per_subject*i:samples_per_subject*(i+1),:]
return subject_indexes
# In[ ]:
def driver_code():
dataset = load_data('DREAMER')
dataset.load_arrays()
X = dataset.eegData
Y = dataset.Y
window = 1
stride = 1
X,Y = epoch_data(X,Y,window,stride,128)
print('shape after epoching')
print('X:',X.shape)
print('Y:',Y.shape)
print('')
print('')
delta,theta,alpha,beta,gamma = calculate_diffrential_entropy_for_bands(X,dataset.freq)
bands = {'delta':delta,'theta':theta,'alpha':alpha,'beta':beta,'gamma':gamma}
for name,band in bands.items():
feature_matrix = calculate_RASM_DASM(band) #extracted RASM ,DASM features for each eng band
print(name ,':' ,end = '')
print(feature_matrix.shape)
print(feature_matrix)
np.savez('features/'+dataset.name.lower()+'_RASM_DASM/'+name+'_'+str(window)+'_'+str(stride),features = feature_matrix,Y=Y)
# In[ ]:
driver_code()
# In[ ]:
np.load('features/oasis/without_autoreject/shannonEntropy_1_1.npz')['features']
# In[ ]: