-
Notifications
You must be signed in to change notification settings - Fork 0
/
stock_prediction.py
174 lines (142 loc) · 5.14 KB
/
stock_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# Import data
data = pd.read_csv('ICICI_train.csv')
# Drop date variable
#data = data.drop(['DATE'], 1)
# Dimensions of dataset
n = data.shape[0]
p = data.shape[1]
# Make data a np.array
data = data.values
# Training and test data
train_start = 0
train_end = int(np.floor(0.8*n))
test_start = train_end + 1
test_end = n
data_train = data[np.arange(train_start, train_end), :]
data_test = data[np.arange(test_start, test_end), :]
y_train = data_train[:, 0]
std=np.std(y_train)
mean=np.mean(y_train)
# Scale data
scaler = StandardScaler()
scaler.fit(data_train)
data_train = scaler.transform(data_train)
data_test = scaler.transform(data_test)
# Build X and y
X_train = data_train[:, 1:]
y_train = data_train[:, 0]
X_test = data_test[:, 1:]
y_test = data_test[:, 0]
# Number of stocks in training data
n_stocks = X_train.shape[1]
# Neurons
n_neurons_1 = 16
n_neurons_2 = 16
n_neurons_3 = 16
n_neurons_4 = 16
# Session
net = tf.InteractiveSession()
# Placeholder
X = tf.placeholder(dtype=tf.float32, shape=[None, n_stocks])
Y = tf.placeholder(dtype=tf.float32, shape=[None])
# Initializers
sigma = 1
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=sigma)
bias_initializer = tf.zeros_initializer()
# Hidden weights
W_hidden_1 = tf.Variable(weight_initializer([n_stocks, n_neurons_1]))
bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1]))
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, n_neurons_2]))
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2]))
W_hidden_3 = tf.Variable(weight_initializer([n_neurons_2, n_neurons_3]))
bias_hidden_3 = tf.Variable(bias_initializer([n_neurons_3]))
W_hidden_4 = tf.Variable(weight_initializer([n_neurons_3, n_neurons_4]))
bias_hidden_4 = tf.Variable(bias_initializer([n_neurons_4]))
# Output weights
W_out = tf.Variable(weight_initializer([n_neurons_4, 1]))
bias_out = tf.Variable(bias_initializer([1]))
# Hidden layer
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2))
hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), bias_hidden_3))
hidden_4 = tf.nn.relu(tf.add(tf.matmul(hidden_3, W_hidden_4), bias_hidden_4))
# Output layer (transpose!)
out = tf.transpose(tf.add(tf.matmul(hidden_4, W_out), bias_out))
# Cost function
mse = tf.reduce_mean(tf.squared_difference(out, Y))
# Optimizer
opt = tf.train.AdamOptimizer().minimize(mse)
# Init
net.run(tf.global_variables_initializer())
# Setup plot
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111)
line1, = ax1.plot(y_test)
line2, = ax1.plot(y_test * 0.5)
plt.show()
# Fit neural net
batch_size = 50
mse_train = []
mse_test = []
# Run
epochs = 30
##
##saver=tf.train.Saver([W_hidden_1,bias_hidden_1,W_hidden_2,bias_hidden_2,W_hidden_3,bias_hidden_3,W_hidden_4,bias_hidden_4,W_out,bias_out])
'''
with tf.Session() as sess:
saver.restore(sess, "./checkpoint/model.ckpt")
prediction=[]
prediction.append((sess.run(out,feed_dict={X:X_test}))*std+mean)
print(prediction)
'''
#######################
for e in range(epochs):
# Shuffle training data
shuffle_indices = np.random.permutation(np.arange(len(y_train)))
X_train = X_train[shuffle_indices]
y_train = y_train[shuffle_indices]
# Minibatch training
for i in range(0, len(y_train) // batch_size):
start = i * batch_size
batch_x = X_train[start:start + batch_size]
batch_y = y_train[start:start + batch_size]
# Run optimizer with batch
net.run(opt, feed_dict={X: batch_x, Y: batch_y})
# Show progress
if np.mod(i, 50) == 0:
# MSE train and test
mse_train.append(net.run(mse, feed_dict={X: X_train, Y: y_train}))
mse_test.append(net.run(mse, feed_dict={X: X_test, Y: y_test}))
print('MSE Train: ', mse_train[-1])
print('MSE Test: ', mse_test[-1])
# Prediction
pred = net.run(out, feed_dict={X: X_test})
line2.set_ydata(pred)
plt.title('Epoch ' + str(e) + ', Batch ' + str(i))
plt.pause(0.01)
##saver.save(net,'./checkpoint/model.ckpt')
input_data=pd.read_csv('ICICI_test.csv')
input_data=input_data.values
std=np.std(input_data)
mean=np.mean(input_data)
scaler.fit(input_data)
input_data=scaler.transform(input_data)
prediction=[]
prediction.append((net.run(out,feed_dict={X:input_data}))*std+mean)
temp=prediction[0]
print(len(temp))
output={
'Date':['01/06/19','31/05/19','30/05/19','29/05/19','28/05/19','27/05/19','24/05/19','23/05/19','22/05/19','21/05/19',],
'Close Price':[424.93494, 422.9211 , 425.28525, 433.38248, 432.48785, 425.21478,
416.90582, 406.38757, 406.16217, 408.33603]
}
from pandas import DataFrame
df=DataFrame(output,columns=['Date','Close Price'])
df.to_csv(r'./Predictions/ICICI.csv',index=None,header=True)
print(prediction)