forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tracing_state.h
174 lines (146 loc) · 4.84 KB
/
tracing_state.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#pragma once
#include <ATen/core/functional.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/stack.h>
#include <c10/util/Exception.h>
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/autograd/function_hook.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/constants.h>
#include <torch/csrc/utils/variadic.h>
#include <ATen/Backtrace.h>
#include <cstdint>
#include <iostream>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <vector>
namespace torch {
namespace jit {
namespace tracer {
using torch::autograd::Variable;
using variable_list = std::vector<Variable>;
struct TORCH_API TracingState
: public std::enable_shared_from_this<TracingState> {
TracingState();
~TracingState();
using WeakTensor = at::WeakTensor;
struct WeakTensorHasher {
size_t operator()(const WeakTensor& t) const {
return std::hash<void*>()(t.unsafeGetTensorImpl());
}
};
struct WeakTensorEq {
bool operator()(const WeakTensor& t1, const WeakTensor& t2) const {
return t1.is_same(t2);
}
};
struct TracingEnvironmentFrame {
std::unordered_map<WeakTensor, Value*, WeakTensorHasher, WeakTensorEq>
value_map;
// TODO weak refcount
std::unordered_map<c10::intrusive_ptr<c10::ivalue::Future>, Value*>
future_map;
};
using TracingEnvironmentStack = std::vector<TracingEnvironmentFrame>;
TracingEnvironmentStack env_stack;
std::shared_ptr<Graph> graph;
bool warn = true;
bool force_outplace = false;
std::function<std::string(const Variable& var)> lookup_var_name_fn =
[](const Variable& var) { return ""; };
};
// This is meant to be used as a thread local place, where we can store extra
// info that gets lost when we call into ATen from Python bindings. One example
// for when this happens is when we get an IntArrayRef argument with e.g. sizes for
// view. When tracing, those might be tensors, which let us encode extra data
// dependencies, but once they get to the ATen call where we actually have the
// tracing logic, they get converted into a raw IntArrayRef, and we loose all
// information. To prevent this, we temporarily stash it in here.
struct ArgumentStash {
struct IntArrayRefTrace : std::vector<Value*> {
IntArrayRefTrace(int size) : std::vector<Value*>(size, nullptr) {}
};
static bool empty() {
return stash.intlists.empty();
}
TORCH_API static void stashIntArrayRefElem(
const std::string& arg_name,
size_t size,
size_t idx,
const Variable& var);
static bool hasIntArrayRef(const std::string& arg_name) {
return stash.intlists.count(arg_name) > 0;
}
static IntArrayRefTrace popIntArrayRef(const std::string& arg_name) {
auto info = std::move(stash.intlists.at(arg_name));
stash.intlists.erase(arg_name);
return info;
}
// Value stashing: Use these methods to stash arguments which correspond
// to regular Value*'s in the graph. i.e. they don't require special
// handling like in the case of IntArrayRefs
TORCH_API static void stashValue(
const std::string& arg_name,
size_t idx,
const Variable& var,
const c10::TypePtr& type = nullptr);
static bool hasValue(const std::string& arg_name) {
return stash.values.count(arg_name) > 0;
}
static Value* popValue(const std::string& arg_name) {
auto info = stash.values.at(arg_name);
stash.values.erase(arg_name);
return info;
}
private:
static thread_local ArgumentStash stash;
std::unordered_map<std::string, IntArrayRefTrace> intlists;
std::unordered_map<std::string, Value*> values;
};
// Retrieve or set the current tracing state. Returns a nullptr if tracing is
// disabled.
TORCH_API const std::shared_ptr<TracingState>& getTracingState();
TORCH_API void setTracingState(std::shared_ptr<TracingState> state);
inline bool isTracing() {
return static_cast<bool>(getTracingState());
}
using warn_fn_type = void (*)(const std::string& msg);
TORCH_API extern const char* WARN_PYTHON_DATAFLOW;
TORCH_API extern const char* WARN_CONSTRUCTOR;
TORCH_API extern const char* WARN_RESIZE;
TORCH_API void _do_warn(const char* _reason, const char* _kind);
inline void warn(const char* _reason, const char* _kind = nullptr) {
if (const auto& state = getTracingState()) {
if (!state->warn)
return;
_do_warn(_reason, _kind);
}
}
TORCH_API void setWarn(warn_fn_type fn);
struct TORCH_API NoWarn {
NoWarn() : state(getTracingState()) {
if (state) {
prev = state->warn;
state->warn = false;
}
}
~NoWarn() {
if (state) {
state->warn = prev;
}
}
std::shared_ptr<TracingState> state;
bool prev;
};
struct WithNestedTracingFrame {
WithNestedTracingFrame() {
getTracingState()->env_stack.emplace_back();
}
~WithNestedTracingFrame() {
getTracingState()->env_stack.pop_back();
}
};
} // namespace tracer
} // namespace jit
} // namespace torch