forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
import.cpp
428 lines (377 loc) · 14.7 KB
/
import.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#include <google/protobuf/util/json_util.h>
#include <google/protobuf/util/type_resolver_util.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/import.h>
#include <torch/csrc/jit/import_export_helpers.h>
#include <torch/csrc/jit/import_source.h>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/pickler.h>
#include <torch/csrc/jit/script/script_type_parser.h>
#include "caffe2/core/common.h"
#include "caffe2/core/types.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/proto/torch_pb.h"
#include "caffe2/serialize/file_adapter.h"
#include "caffe2/serialize/inline_container.h"
#include "caffe2/serialize/istream_adapter.h"
#include <ATen/ATen.h>
#include <fstream>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
namespace jit {
using caffe2::serialize::FileAdapter;
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::ReadAdapterInterface;
namespace {
// this is a deserializer class which loads script modules from pt files. the
// content of the file is written using PyTorchStreamWriter, for details please
// check caffe2/serialize/inline_container.h. all the records except the last
// one are tensor data, and the last record is a serialized ModelProto, defined
// in caffe2/proto/torch.proto. ModelProto contains all the metadata of the
// model, and it is serialized as json.
class ScriptModuleDeserializer final {
public:
ScriptModuleDeserializer(const std::string& filename);
ScriptModuleDeserializer(std::istream* is);
explicit ScriptModuleDeserializer(std::unique_ptr<ReadAdapterInterface> rai);
void deserialize(
script::ModuleLookup module_lookup,
c10::optional<at::Device> device,
script::ExtraFilesMap& extra_files);
private:
at::Tensor loadTensor(
const torch::TensorDef& tensor_proto,
std::unordered_map<std::string, at::Storage>& storageMap);
void convertModule(const torch::ModuleDef& module_def);
void loadTensorTable(torch::ModelDef* model_def);
std::vector<IValue> loadPickleArchive(const std::string& name);
void importCallback(const std::string& qualifier);
void moduleSetState(
const std::shared_ptr<script::Module>& module,
IValue state);
caffe2::serialize::PyTorchStreamReader reader_;
// this is a hack to make sure the script module created in C++ is the
// same as created in Python
script::ModuleLookup moduleLookup_;
c10::optional<at::Device> device_;
std::vector<std::string> moduleStack_;
std::vector<at::Tensor> tensor_table_;
std::vector<IValue> pickled_ivalues_;
std::unordered_set<std::string> imported_libs_;
std::shared_ptr<script::Module> main_module_;
};
ScriptModuleDeserializer::ScriptModuleDeserializer(const std::string& filename)
: reader_(filename.c_str()) {
// TODO appropriate support for mmap, right now still use stream reader
}
ScriptModuleDeserializer::ScriptModuleDeserializer(std::istream* is)
: reader_(is) {}
ScriptModuleDeserializer::ScriptModuleDeserializer(
std::unique_ptr<ReadAdapterInterface> rai)
: reader_(std::move(rai)) {}
void ScriptModuleDeserializer::deserialize(
script::ModuleLookup module_lookup,
c10::optional<at::Device> device,
script::ExtraFilesMap& extra_files) {
C10_LOG_API_USAGE_ONCE("torch.script.load");
torch::ModelDef model_def;
at::DataPtr data_ptr;
size_t data_size;
std::tie(data_ptr, data_size) = reader_.getRecord("model.json");
// NB: cannot use JsonStringToMessage, since fbcode's protobuf is too old
// be consistent with JsonStringToMessage
std::string url_prefix = "type.googleapis.com";
std::unique_ptr<::google::protobuf::util::TypeResolver> resolver(
::google::protobuf::util::NewTypeResolverForDescriptorPool(
url_prefix, model_def.GetDescriptor()->file()->pool()));
std::string json_string = std::string(
static_cast<char*>(data_ptr.get()),
static_cast<char*>(data_ptr.get()) + data_size);
std::string binary_string;
::google::protobuf::util::JsonParseOptions opts;
opts.ignore_unknown_fields = true;
auto convert_result = ::google::protobuf::util::JsonToBinaryString(
resolver.get(),
url_prefix + "/" + model_def.GetDescriptor()->full_name(),
json_string,
&binary_string,
opts);
if (!convert_result.ok()) {
std::stringstream ss;
ss << convert_result;
AT_ERROR(ss.str());
}
AT_ASSERTM(
model_def.ParseFromString(binary_string),
"JSON transcoder produced invalid protobuf output.");
moduleLookup_ = module_lookup;
device_ = device;
main_module_ = module_lookup({});
const auto& module_def = model_def.main_module();
// Load extra files.
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_.hasFile(key)) {
at::DataPtr meta_ptr;
size_t meta_size;
std::tie(meta_ptr, meta_size) = reader_.getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
loadTensorTable(&model_def);
if (model_def.proto_version() >= 2) {
pickled_ivalues_ = loadPickleArchive("attributes.pkl");
}
// TODO: this can be simplified when C++/Python interop lands,
// and the submodules would be created as the same in either C++ or Python
convertModule(module_def);
}
void ScriptModuleDeserializer::loadTensorTable(torch::ModelDef* model_def) {
std::unordered_map<std::string, at::Storage> storageMap;
for (const torch::TensorDef& tensor : model_def->tensors()) {
tensor_table_.emplace_back(loadTensor(tensor, storageMap));
}
}
std::vector<IValue> ScriptModuleDeserializer::loadPickleArchive(const std::string& name) {
at::DataPtr attributes_ptr;
size_t attributes_size;
std::tie(attributes_ptr, attributes_size) =
reader_.getRecord(name);
Unpickler unpickler(attributes_ptr.get(), attributes_size, &tensor_table_);
return unpickler.parse_ivalue_list();
}
at::Tensor ScriptModuleDeserializer::loadTensor(
const torch::TensorDef& tensor_proto,
std::unordered_map<std::string, at::Storage>& storageMap) {
std::vector<int64_t> dims(
tensor_proto.dims().begin(), tensor_proto.dims().end());
std::vector<int64_t> strides(
tensor_proto.strides().begin(), tensor_proto.strides().end());
auto type = at::typeMetaToScalarType(
caffe2::DataTypeToTypeMeta(tensor_proto.data_type()));
const std::string& record_key = tensor_proto.data().key();
AT_ASSERT(tensor_proto.has_device() && !tensor_proto.device().empty());
at::Device device(tensor_proto.device());
if (device_.has_value()) {
// override the device, if user provides map_location
device = device_.value();
}
auto storage_it = storageMap.find(record_key);
if (storage_it == storageMap.end()) {
at::DataPtr storage_ptr;
uint64_t record_size;
std::tie(storage_ptr, record_size) = reader_.getRecord(record_key);
auto cpu_storage = at::Storage(
at::CPU(type).typeMeta(),
record_size / at::CPU(type).typeMeta().itemsize(),
std::move(storage_ptr),
/*allocator=*/nullptr,
/*resizable=*/false); // NB: we didn't set any allocator for the tensor
if (device.type() == at::DeviceType::CPU) {
storage_it =
storageMap.insert(std::make_pair(record_key, cpu_storage)).first;
} else if (device.type() == at::DeviceType::CUDA) {
at::Tensor cpu_tensor =
at::empty({0}, at::CPU(type).options()).set_(cpu_storage);
at::Storage cuda_storage =
cpu_tensor.to(device, cpu_tensor.scalar_type()).storage();
storage_it =
storageMap.insert(std::make_pair(record_key, cuda_storage)).first;
} else {
AT_ERROR(
"supported devices include CPU and CUDA, however got ",
at::DeviceTypeName(device.type(), false));
}
}
if (storage_it->second.device().type() != device.type() ||
(device.has_index() &&
storage_it->second.device().index() != device.index())) {
std::stringstream oss;
oss << "storage previously was specified with device "
<< storage_it->second.device() << "but now is specified with device "
<< device << std::endl;
AT_ERROR(oss.str());
}
at::Tensor result;
if (device.type() == at::DeviceType::CPU) {
result =
at::empty({0}, at::CPU(type).options())
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
} else if (device.type() == at::DeviceType::CUDA) {
result =
at::empty(
{0}, c10::TensorOptions(type).device(storage_it->second.device()))
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
}
AT_ASSERT(result.defined());
result = autograd::make_variable(result, tensor_proto.requires_grad());
return result;
}
void ScriptModuleDeserializer::importCallback(const std::string& qualifier) {
if (imported_libs_.count(qualifier)) {
return;
}
imported_libs_.insert(qualifier);
std::function<void(const std::string&)> import_callback =
[this](const std::string& qualifier) { importCallback(qualifier); };
const std::string path = ImportExportHelpers::qualifierToPath(qualifier);
at::DataPtr data;
size_t size;
std::tie(data, size) = reader_.getRecord(path);
std::string src(static_cast<const char*>(data.get()), size);
script::import_libs(
main_module_->class_compilation_unit(),
qualifier,
src,
tensor_table_,
import_callback);
}
void ScriptModuleDeserializer::moduleSetState(
const std::shared_ptr<script::Module>& module,
IValue state) {
auto setstate = module->class_compilation_unit().find_function("__setstate__");
AT_CHECK(
setstate != nullptr,
"Cannot call '__setstate__' method because"
" it does not exist");
// TODO: once modules are first class in the interpreter and methods are not
// lowered, change this to `module->run_method("__setstate__", {state});`
setstate->run({module->module_object(), state});
}
void ScriptModuleDeserializer::convertModule(
const torch::ModuleDef& module_def) {
std::shared_ptr<script::Module> module = moduleLookup_(moduleStack_);
module->set_optimized(module_def.optimize());
for (int i = 0; i < module_def.submodules_size(); ++i) {
const torch::ModuleDef& sub_def = module_def.submodules(i);
moduleStack_.emplace_back(sub_def.name());
convertModule(sub_def);
moduleStack_.pop_back();
}
for (int i = 0; i < module_def.parameters_size(); ++i) {
const torch::ParameterDef& param_def = module_def.parameters(i);
at::Tensor tensor = tensor_table_.at(param_def.tensor_id());
if (param_def.is_buffer()) {
module->register_buffer(param_def.name(), tensor);
} else {
module->register_parameter(param_def.name(), tensor, /*is_buffer=*/false);
}
}
script::ScriptTypeParser typeParser;
for (int i = 0; i < module_def.attributes_size(); ++i) {
const torch::AttributeDef& attr_def = module_def.attributes(i);
if (module->find_buffer(attr_def.name())) {
// TODO: handle this above so this can be removed
continue;
}
IValue ivalue;
if (attr_def.id() >= 0) {
// attribute has no value in the table, set it to None for now. After
// __getstate__, check that all the attributes that are not Optional
// can't be None
ivalue = pickled_ivalues_.at(attr_def.id());
}
module->register_attribute(
attr_def.name(), typeParser.parseType(attr_def.type()), ivalue);
}
if (module_def.has_torchscript_arena()) {
at::DataPtr data;
size_t size;
std::tie(data, size) =
reader_.getRecord(module_def.torchscript_arena().key());
std::string data_str(static_cast<const char*>(data.get()), size);
std::function<void(const std::string&)> import_callback =
[this](const std::string& qualifier) { importCallback(qualifier); };
script::import_methods(
main_module_->class_compilation_unit(),
module,
data_str,
tensor_table_,
import_callback);
}
if (module_def.has_get_state_attribute_id()) {
moduleSetState(
module, pickled_ivalues_.at(module_def.get_state_attribute_id()));
}
for (const auto& slot : module->get_attributes()) {
// Verify that all the non-optional attributes have been initialized
// TODO: Issue #20497
if (slot.type()->kind() != TypeKind::OptionalType) {
AT_CHECK(
!slot.value().isNone(),
"The field '",
slot.name(),
"' was left unitialized after __setstate__, but expected a ",
"value of type '",
slot.type()->python_str(),
"'");
}
}
}
} // namespace
void import_ir_module(
script::ModuleLookup module_lookup,
std::istream& in,
c10::optional<at::Device> device,
script::ExtraFilesMap& extra_files) {
ScriptModuleDeserializer deserializer(&in);
deserializer.deserialize(module_lookup, device, extra_files);
}
void import_ir_module(
script::ModuleLookup module_lookup,
const std::string& filename,
c10::optional<at::Device> device,
script::ExtraFilesMap& extra_files) {
ScriptModuleDeserializer deserializer(filename);
deserializer.deserialize(module_lookup, device, extra_files);
}
void import_ir_module(
script::ModuleLookup module_lookup,
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<at::Device> device,
script::ExtraFilesMap& extra_files) {
ScriptModuleDeserializer deserializer(std::move(rai));
deserializer.deserialize(module_lookup, device, extra_files);
}
std::shared_ptr<script::Module> load(
std::istream& in,
c10::optional<at::Device> device,
script::ExtraFilesMap& extra_files) {
std::unique_ptr<IStreamAdapter> rai =
caffe2::make_unique<IStreamAdapter>(&in);
auto module = load(std::move(rai), device, extra_files);
return module;
}
std::shared_ptr<script::Module> load(
const std::string& filename,
c10::optional<at::Device> device,
script::ExtraFilesMap& extra_files) {
std::unique_ptr<FileAdapter> rai = caffe2::make_unique<FileAdapter>(filename);
auto module = load(std::move(rai), device, extra_files);
return module;
}
std::shared_ptr<script::Module> load(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
script::ExtraFilesMap& extra_files) {
auto module = std::make_shared<script::Module>();
auto module_lookup = [&](const std::vector<std::string>& qualified_name) {
std::shared_ptr<script::Module> curr = module;
for (const auto& name : qualified_name) {
if (curr->find_module(name) == nullptr) {
curr->register_module(name, std::make_shared<script::Module>());
}
curr = curr->get_module(name);
}
return curr;
};
ScriptModuleDeserializer deserializer(std::move(rai));
deserializer.deserialize(module_lookup, device, extra_files);
return module;
}
} // namespace jit
} // namespace torch