forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
concat_split_op.h
334 lines (311 loc) · 10.6 KB
/
concat_split_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#ifndef CAFFE2_OPERATORS_CONCAT_SPLIT_OP_H_
#define CAFFE2_OPERATORS_CONCAT_SPLIT_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/string_utils.h"
namespace caffe2 {
template <class Context>
class SplitOp final : public Operator<Context> {
public:
static const int kSplitOpInputSize = 2;
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SplitOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
split_(this->template GetRepeatedArgument<int>("split")) {
CAFFE_ENFORCE(
!(OperatorBase::HasArgument("axis") &&
OperatorBase::HasArgument("order")),
"You shouldn't specify both the dim to split, and the order "
"in the case of 4-D images.");
if (OperatorBase::HasArgument("axis")) {
axis_ = this->template GetSingleArgument<int>("axis", -1);
// only exists for computing the gradient of a Concat with 'add_axis'
add_axis_ = this->template GetSingleArgument<int>("add_axis", 0);
} else {
axis_ = GetDimFromOrderString(
this->template GetSingleArgument<string>("order", "NCHW"));
add_axis_ = 0;
}
}
bool RunOnDevice() override;
protected:
int axis_;
int add_axis_;
vector<int> split_;
// Input: X, optionally split
// The split tensor is stored in CPU.
};
template <class Context>
class SplitByLengthsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SplitByLengthsOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {
CAFFE_ENFORCE(
!(OperatorBase::HasArgument("axis") &&
OperatorBase::HasArgument("order")),
"You shouldn't specify both the dim to split, and the order "
"in the case of 4-D images.");
if (OperatorBase::HasArgument("axis")) {
axis_ = this->template GetSingleArgument<int>("axis", 0);
} else {
axis_ = GetDimFromOrderString(
this->template GetSingleArgument<string>("order", "NCHW"));
}
}
bool RunOnDevice() override;
protected:
int axis_;
Tensor inclusive_scan_buffer_{Context::GetDeviceType()};
Tensor inclusive_scan_length_buffer_{Context::GetDeviceType()};
// Input: X, optionally split
// The split tensor is stored in CPU.
};
template <class Context>
class ConcatOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit ConcatOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {
CAFFE_ENFORCE(
!(OperatorBase::HasArgument("axis") &&
OperatorBase::HasArgument("order")),
"You shouldn't specify both the dim to concat, and the order "
"in the case of 4-D images.");
if (OperatorBase::HasArgument("axis")) {
axis_ = this->template GetSingleArgument<int>("axis", -1);
add_axis_ = this->template GetSingleArgument<int>("add_axis", 0);
} else {
axis_ = GetDimFromOrderString(
this->template GetSingleArgument<string>("order", "NCHW"));
add_axis_ = 0;
}
}
bool RunOnDevice() override;
protected:
int axis_;
int add_axis_;
// Input: a number of tensors. Output: Y, split
// The split are stored in CPU.
};
// Implementations
template <class Context>
bool SplitOp<Context>::RunOnDevice() {
auto& input = Input(0);
int canonical_axis = input.canonical_axis_index(axis_);
CAFFE_ENFORCE_LT(
canonical_axis, input.dim(), "Axis not in input ndim range.");
const int input_channels = input.dim32(canonical_axis);
const int* axis_data;
vector<int> equal_split;
if (InputSize() == kSplitOpInputSize) {
// We obtain split from the input tensor.
CAFFE_ENFORCE_EQ(
split_.size(),
0,
"If you set split with an input blob, do not pass in "
"split in the argument.");
auto& split_tensor = this->template Input<Tensor>(1, CPU);
CAFFE_ENFORCE_EQ(split_tensor.numel(), OutputSize());
axis_data = split_tensor.template data<int>();
} else if (split_.size() == 0) {
CAFFE_ENFORCE_EQ(
input_channels % OutputSize(),
0,
"If you did not specify split explicitly, the number of "
"input channels should be divisible by the output size.");
equal_split.resize(OutputSize(), input_channels / OutputSize());
axis_data = equal_split.data();
} else {
// We obtain split from the parameters.
CAFFE_ENFORCE_EQ(
split_.size(),
OutputSize(),
"The number of splits specified should be equal to the "
"number of outputs.");
axis_data = split_.data();
}
CAFFE_ENFORCE_EQ(
add_axis_ ? OutputSize()
: std::accumulate(axis_data, axis_data + OutputSize(), 0),
input_channels,
"Sum of split dimensions do not match: should be ",
input_channels);
vector<int64_t> output_dims(input.sizes().vec());
int before = 1, after = 1;
for (int i = 0; i < canonical_axis; ++i) {
before *= input.dim32(i);
}
for (int i = canonical_axis + 1; i < input.dim(); ++i) {
after *= input.dim32(i);
}
if (add_axis_) {
output_dims.erase(output_dims.begin() + canonical_axis);
}
size_t input_offset = 0;
for (int i = 0; i < OutputSize(); ++i) {
auto* output = Output(i);
auto axis_dim = add_axis_ ? 1 : axis_data[i];
if (!add_axis_) {
output_dims[canonical_axis] = axis_data[i];
}
output->Resize(output_dims);
math::CopyMatrix<Context>(
input.itemsize(),
before,
axis_dim * after,
static_cast<const char*>(input.raw_data()) + input_offset,
input.dim32(canonical_axis) * after,
output->raw_mutable_data(input.dtype()),
axis_dim * after,
&context_,
input.dtype().copy());
input_offset += axis_dim * after * input.itemsize();
}
return true;
}
// Implementations
template <class Context>
bool SplitByLengthsOp<Context>::RunOnDevice() {
auto& input = Input(0);
auto& length = this->template Input<Tensor>(1, CPU);
auto length_length = length.numel();
CAFFE_ENFORCE_EQ(
length_length % OutputSize(),
0,
"len(Lengths) should be divisible by OutputSize().");
int canonical_axis = input.canonical_axis_index(axis_);
CAFFE_ENFORCE_LT(
canonical_axis, input.dim(), "Axis not in input ndim range.");
const int input_channels = input.dim32(canonical_axis);
const auto* axis_data = length.template data<int>();
CAFFE_ENFORCE_EQ(
std::accumulate(axis_data, axis_data + length.numel(), 0),
input_channels,
"Sum of split dimensions do not match: should be ",
input_channels);
vector<int64_t> output_dims(input.sizes().vec());
int before = input.size_to_dim(canonical_axis);
int after = input.size_from_dim(canonical_axis + 1);
size_t input_offset = 0;
for (int i = 0; i < OutputSize(); ++i) {
auto* output = Output(i);
const auto* axis_offset = axis_data + length_length / OutputSize() * i;
auto axis_dim = std::accumulate(
axis_offset, axis_offset + length_length / OutputSize(), 0);
output_dims[canonical_axis] = axis_dim;
output->Resize(output_dims);
math::CopyMatrix<Context>(
input.itemsize(),
before,
axis_dim * after,
static_cast<const char*>(input.raw_data()) + input_offset,
input.dim32(canonical_axis) * after,
output->raw_mutable_data(input.dtype()),
axis_dim * after,
&context_,
input.dtype().copy());
input_offset += axis_dim * after * input.itemsize();
}
return true;
}
template <class Context>
bool ConcatOp<Context>::RunOnDevice() {
auto* output = Output(0);
// We can override default options(Context::GetDeviceType())
// by explictly passing in device type we want
Tensor* split = Output(
1, std::vector<int64_t>(1, InputSize()), at::dtype<int>().device(CPU));
int* axis_data = split->template mutable_data<int>();
auto& input_zero = Input(0);
int adj_size = input_zero.dim() + (add_axis_ ? 1 : 0);
int canonical_axis = canonical_axis_index_(axis_, adj_size);
CAFFE_ENFORCE_LT(canonical_axis, adj_size, "Axis not in input ndim range.");
for (int i = 1; i < InputSize(); ++i) {
CAFFE_ENFORCE(
Input(i).dtype() == input_zero.dtype(),
"All inputs must have the same type, expected: ",
input_zero.dtype().name(),
" but got: ",
Input(i).dtype().name(),
" for input: ",
i);
}
int before = 1, after = 1;
vector<int64_t> output_dims(input_zero.sizes().vec());
for (int i = 0; i < input_zero.dim(); ++i) {
if (i == canonical_axis && !add_axis_) {
continue;
}
int dim = input_zero.dim32(i);
if (i < canonical_axis) {
before *= dim;
} else { // i > canonical_axis || i == canonical_axis && add_axis_
after *= dim;
}
// check the input dims are compatible.
for (int j = 1; j < InputSize(); ++j) {
int dim_j = Input(j).dim32(i);
CAFFE_ENFORCE(
dim == dim_j,
"Expect dimension = ",
dim,
" got ",
dim_j,
" at axis = ",
i,
" for input: ",
j,
". The input tensors can only have different dimensions "
"when arg 'add_axis' = 0 and along the axis = ",
canonical_axis,
" <",
Input(0).sizes(),
"> vs <",
Input(j).sizes(),
">.");
}
}
int output_channels = 0;
for (int i = 0; i < InputSize(); ++i) {
axis_data[i] = add_axis_ ? 1 : Input(i).dim32(canonical_axis);
output_channels += axis_data[i];
}
if (add_axis_) {
output_dims.insert(output_dims.begin() + canonical_axis, output_channels);
} else {
output_dims[canonical_axis] = output_channels;
}
output->Resize(output_dims);
size_t output_offset = 0;
for (int i = 0; i < InputSize(); ++i) {
auto& input = Input(i);
auto axis_dim = add_axis_ ? 1 : input.dim32(canonical_axis);
math::CopyMatrix<Context>(
input.itemsize(),
before,
axis_dim * after,
input.raw_data(),
axis_dim * after,
static_cast<char*>(output->raw_mutable_data(input_zero.dtype())) +
output_offset,
output_channels * after,
&context_,
input_zero.dtype().copy());
output_offset += axis_dim * after * input.itemsize();
}
return true;
}
OpSchema::Cost CostInferenceForConcat(
const OperatorDef& def,
const std::vector<TensorShape>& in);
std::vector<TensorShape> TensorInferenceForConcat(
const OperatorDef& def,
const std::vector<TensorShape>& in);
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CONCAT_SPLIT_OP_H_