forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
channel_stats_op.h
60 lines (48 loc) · 1.76 KB
/
channel_stats_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#ifndef CAFFE2_OPERATORS_CHANNEL_STATS_OP_H_
#define CAFFE2_OPERATORS_CHANNEL_STATS_OP_H_
#include <string>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <class Context>
class ChannelStatsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit ChannelStatsOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
order_(StringToStorageOrder(
this->template GetSingleArgument<std::string>("order", "NCHW"))) {
CAFFE_ENFORCE_NE(order_, StorageOrder::UNKNOWN);
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
const auto& X = Input(0);
const int ndim = X.dim();
const int N = X.dim32(0);
const int C = order_ == StorageOrder::NCHW ? X.dim32(1) : X.dim32(ndim - 1);
const int HxW = X.numel() / (N * C);
auto* sum = Output(0, {C}, at::dtype<T>());
auto* sumsq = Output(1, {C}, at::dtype<T>());
const T* X_data = X.template data<T>();
T* sum_data = sum->template mutable_data<T>();
T* sumsq_data = sumsq->template mutable_data<T>();
return order_ == StorageOrder::NCHW
? ComputeChannelStatsNCHW<T>(N, C, HxW, X_data, sum_data, sumsq_data)
: ComputeChannelStatsNHWC<T>(N, C, HxW, X_data, sum_data, sumsq_data);
}
private:
template <typename T>
bool
ComputeChannelStatsNCHW(int N, int C, int HxW, const T* X, T* sum, T* sumsq);
template <typename T>
bool
ComputeChannelStatsNHWC(int N, int C, int HxW, const T* X, T* sum, T* sumsq);
const StorageOrder order_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CHANNEL_STATS_OP_H_