forked from OndrejTexler/Few-Shot-Patch-Based-Training
-
Notifications
You must be signed in to change notification settings - Fork 8
/
trainers1.py
267 lines (207 loc) · 12.8 KB
/
trainers1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import time
import models
import numpy as np
import six
import torch
import torch.nn as nn
from torch.autograd import Variable
from PIL import Image
from custom_transforms import *
from data import DatasetFullImages
import os
import gc
import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
torch.backends.cudnn.benchmark = False
class Trainer(object):
def __init__(self,
train_loader, data_for_dataloader, opt_discriminator, opt_generator,
reconstruction_criterion, adversarial_criterion, reconstruction_weight,
adversarial_weight, log_interval, scalar_logger, model_logger,
perception_loss_model, perception_loss_weight, use_image_loss, device
):
self.train_loader = train_loader
self.data_for_dataloader = data_for_dataloader
self.opt_discriminator = opt_discriminator
self.opt_generator = opt_generator
self.reconstruction_criterion = reconstruction_criterion
self.adversarial_criterion = adversarial_criterion
self.reconstruction_weight = reconstruction_weight
self.adversarial_weight = adversarial_weight
self.scalar_logger = scalar_logger
self.model_logger = model_logger
self.training_log = {}
self.log_interval = log_interval
self.perception_loss_weight = perception_loss_weight
self.perception_loss_model = perception_loss_model
self.use_adversarial_loss = False
self.use_image_loss = use_image_loss
self.device = device
self.dataset = None
self.imloader = None
def run_discriminator(self, discriminator, images):
return discriminator(images)
def compute_discriminator_loss(self, generator, discriminator, batch):
generated = generator(batch['pre'])
fake = self.apply_mask(generated, batch, 'pre_mask')
fake_labels, _ = self.run_discriminator(discriminator, fake.detach())
true = self.apply_mask(batch['already'], batch, 'already_mask')
true_labels, _ = self.run_discriminator(discriminator, true)
discriminator_loss = self.adversarial_criterion(fake_labels, self.zeros_like(fake_labels)) + \
self.adversarial_criterion(true_labels, self.ones_like(true_labels))
return discriminator_loss
def compute_generator_loss(self, generator, discriminator, batch, use_gan, use_mask):
image_loss = 0
perception_loss = 0
adversarial_loss = 0
generated = generator(batch['pre'])
if use_mask:
generated = generated * batch['mask']
batch['post'] = batch['post'] * batch['mask']
if self.use_image_loss:
if generated[0][0].shape != batch['post'][0][0].shape:
if ((batch['post'][0][0].shape[0] - generated[0][0].shape[0]) % 2) != 0:
raise RuntimeError("batch['post'][0][0].shape[0] - generated[0][0].shape[0] must be even number")
if generated[0][0].shape[0] != generated[0][0].shape[1] or batch['post'][0][0].shape[0] != batch['post'][0][0].shape[1]:
raise RuntimeError("And also it is expected to be exact square ... fix it if you want")
boundary_size = int((batch['post'][0][0].shape[0] - generated[0][0].shape[0]) / 2)
cropped_batch_post = batch['post'][:, :, boundary_size: -1*boundary_size, boundary_size: -1*boundary_size]
image_loss = self.reconstruction_criterion(generated, cropped_batch_post)
else:
image_loss = self.reconstruction_criterion(generated, batch['post'])
if self.perception_loss_model is not None:
_, fake_features = self.perception_loss_model(generated)
_, target_features = self.perception_loss_model(Variable(batch['post'], requires_grad=False))
perception_loss = ((fake_features - target_features) ** 2).mean()
if self.use_adversarial_loss and use_gan:
fake = self.apply_mask(generated, batch, 'pre_mask')
fake_smiling_labels, _ = self.run_discriminator(discriminator, fake)
adversarial_loss = self.adversarial_criterion(fake_smiling_labels, self.ones_like(fake_smiling_labels))
return image_loss, perception_loss, adversarial_loss, generated
def train(self, generator, discriminator, epochs, data_root, config_yaml_name, starting_batch_num):
self.use_adversarial_loss = discriminator is not None
batch_num = starting_batch_num
save_num = 0
start = time.time()
for epoch in range(epochs):
np.random.seed()
for i, batch in enumerate(self.train_loader):
# just sets the models into training mode (enable BN and DO)
[m.train() for m in [generator, discriminator] if m is not None]
batch = {k: batch[k].to(self.device) if isinstance(batch[k], torch.Tensor) else batch[k]
for k in batch.keys()}
# train discriminator
if self.use_adversarial_loss:
self.opt_discriminator.zero_grad()
discriminator_loss = self.compute_discriminator_loss(generator, discriminator, batch)
discriminator_loss.backward()
self.opt_discriminator.step()
# train generator
self.opt_generator.zero_grad()
g_image_loss, g_perc_loss, g_adv_loss, _ = self.compute_generator_loss(generator, discriminator, batch, use_gan=True, use_mask=False)
generator_loss = self.reconstruction_weight * g_image_loss + \
self.perception_loss_weight * g_perc_loss + \
self.adversarial_weight * g_adv_loss
generator_loss.backward()
self.opt_generator.step()
# log losses
current_log = {key: value.item() for key, value in six.iteritems(locals()) if
'loss' in key and isinstance(value, Variable)}
self.add_log(current_log)
batch_num += 1
if batch_num % 100 == 0:
print(f"Batch num: {batch_num}, totally elapsed {(time.time() - start)}", flush=True)
#if batch_num % self.log_interval == 0 or batch_num == 1:
if batch_num % self.log_interval == 0 or batch_num == 1: # (time.time() - start) > 16:
eval_start = time.time()
generator.eval()
self.test_on_full_image(generator, batch_num, data_root, config_yaml_name)
self.flush_scalar_log(batch_num, time.time() - start)
self.model_logger.save(generator, save_num, True)
#self.model_logger.save(discriminator, save_num, False)
save_num += 1
print(f"Eval of batch: {batch_num} took {(time.time() - eval_start)}", flush=True)
#if batch_num > 5000:
# sys.exit(0)
self.model_logger.save(generator, 99999)
# Accumulates the losses
def add_log(self, log):
for k, v in log.items():
if k in self.training_log:
self.training_log[k] += v
else:
self.training_log[k] = v
# Divide the losses by log_interval and print'em
def flush_scalar_log(self, batch_num, took):
for key in self.training_log.keys():
self.scalar_logger.scalar_summary(key, self.training_log[key] / self.log_interval, batch_num)
log = "[%d]" % batch_num
for key in sorted(self.training_log.keys()):
log += " [%s] % 7.4f" % (key, self.training_log[key] / self.log_interval)
log += ". Took {}".format(took)
print(log, flush=True)
self.training_log = {}
# Test the intermediate model on data from _gen folder
def test_on_full_image(self, generator, batch_num, data_root, config_yaml_name):
config_yaml_name = config_yaml_name.replace("reference", "").replace(".yaml", "")
data_root = data_root.replace("_train", "_gen")
if self.dataset is None:
self.dataset = DatasetFullImages(data_root + "/" + self.data_for_dataloader['dir_pre'].split("/")[-1],
"ignore", # data_root + "/" + "ebsynth",
"ignore", # data_root + "/" + "mask",
self.device,
dir_x1=data_root + "/" + self.data_for_dataloader['dir_x1'].split("/")[-1] if self.data_for_dataloader['dir_x1'] is not None else None,
dir_x2=data_root + "/" + self.data_for_dataloader['dir_x2'].split("/")[-1] if self.data_for_dataloader['dir_x2'] is not None else None,
dir_x3=data_root + "/" + self.data_for_dataloader['dir_x3'].split("/")[-1] if self.data_for_dataloader['dir_x3'] is not None else None,
dir_x4=data_root + "/" + self.data_for_dataloader['dir_x4'].split("/")[-1] if self.data_for_dataloader['dir_x4'] is not None else None,
dir_x5=data_root + "/" + self.data_for_dataloader['dir_x5'].split("/")[-1] if self.data_for_dataloader['dir_x5'] is not None else None,
dir_x6=data_root + "/" + self.data_for_dataloader['dir_x6'].split("/")[-1] if self.data_for_dataloader['dir_x6'] is not None else None,
dir_x7=data_root + "/" + self.data_for_dataloader['dir_x7'].split("/")[-1] if self.data_for_dataloader['dir_x7'] is not None else None,
dir_x8=data_root + "/" + self.data_for_dataloader['dir_x8'].split("/")[-1] if self.data_for_dataloader['dir_x8'] is not None else None,
dir_x9=data_root + "/" + self.data_for_dataloader['dir_x9'].split("/")[-1] if self.data_for_dataloader['dir_x9'] is not None else None)
self.imloader = torch.utils.data.DataLoader(self.dataset, 1, shuffle=False, num_workers=1, drop_last=False) # num_workers=4
with torch.no_grad():
log = "### \n"
log = log + "[%d]" % batch_num + " "
generator_loss_on_ebsynth = 0
for i, batch in enumerate(self.imloader):
batch = {k: batch[k].to(self.device) if isinstance(batch[k], torch.Tensor) else batch[k]
for k in batch.keys()}
g_image_loss, g_perc_loss, g_adv_loss, e_cls_loss, e_smiling_loss, gan_output =\
0, 0, 0, 0, 0, generator(batch['pre'])
generator_loss = self.reconstruction_weight * g_image_loss + \
self.perception_loss_weight * g_perc_loss + \
self.adversarial_weight * g_adv_loss
if True or batch['file_name'][0] != "111.png": # do not accumulate loss in train frame
generator_loss_on_ebsynth = generator_loss_on_ebsynth + generator_loss
if True or batch['file_name'][0] in ["111.png", "101.png", "106.png", "116.png", "121.png"]:
#log = log + batch['file_name'][0]
#log = log + ": %7.4f" % generator_loss + ", "
image_space = to_image_space(gan_output.cpu().data.numpy())
gt_test_ganoutput_path = data_root + "/" + "res_" + config_yaml_name
if not os.path.exists(gt_test_ganoutput_path):
os.mkdir(gt_test_ganoutput_path)
gt_test_ganoutput_path_batch_num = gt_test_ganoutput_path + "/" + str("%07d" % batch_num)
if not os.path.exists(gt_test_ganoutput_path_batch_num):
os.mkdir(gt_test_ganoutput_path_batch_num)
for k in range(0, len(image_space)):
im = image_space[k].transpose(1, 2, 0)
Image.fromarray(im).save(os.path.join(gt_test_ganoutput_path_batch_num, batch['file_name'][k]))
if i == 0:
Image.fromarray(im).save(os.path.join(gt_test_ganoutput_path, str("%07d" % batch_num) + ".png"))
log = log + " totalLossOnEbsynth: %7.4f" % (generator_loss_on_ebsynth/(len(self.imloader)))
print(log, flush=True)
def apply_mask(self, x, batch, mask_key):
if mask_key in batch:
mask = Variable(batch[mask_key].expand(x.size()), requires_grad=False)
return x * (mask / 2 + 0.5)
return x
def ones_like(self, x):
return torch.ones_like(x).to(self.device)
def zeros_like(self, x):
return torch.zeros_like(x).to(self.device)
@staticmethod
def to_image_space(x):
return ((np.clip(x, -1, 1) + 1) / 2 * 255).astype(np.uint8)