forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
262 lines (238 loc) · 11.6 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import print_function
import logging
import argparse
import os
import time
import sys
import shutil
import csv
import re
import subprocess, threading
import pygal
import importlib
import collections
import threading
import copy
'''
Setup Logger and LogLevel
'''
def setup_logging(log_loc):
if os.path.exists(log_loc):
shutil.move(log_loc, log_loc + "_" + str(int(os.path.getctime(log_loc))))
os.makedirs(log_loc)
log_file = '{}/benchmark.log'.format(log_loc)
LOGGER = logging.getLogger('benchmark')
LOGGER.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s:%(name)s %(message)s')
file_handler = logging.FileHandler(log_file)
console_handler = logging.StreamHandler()
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
LOGGER.addHandler(file_handler)
LOGGER.addHandler(console_handler)
return LOGGER
'''
Runs the command given in the cmd_args for specified timeout period
and terminates after
'''
class RunCmd(threading.Thread):
def __init__(self, cmd_args, logfile):
threading.Thread.__init__(self)
self.cmd_args = cmd_args
self.logfile = logfile
self.process = None
def run(self):
LOGGER = logging.getLogger('benchmark')
LOGGER.info('started running %s', ' '.join(self.cmd_args))
log_fd = open(self.logfile, 'w')
self.process = subprocess.Popen(self.cmd_args, stdout=log_fd, stderr=subprocess.STDOUT, universal_newlines=True)
for line in self.process.communicate():
LOGGER.debug(line)
log_fd.close()
LOGGER.info('finished running %s', ' '.join(self.cmd_args))
def startCmd(self, timeout):
LOGGER.debug('Attempting to start Thread to run %s', ' '.join(self.cmd_args))
self.start()
self.join(timeout)
if self.is_alive():
LOGGER.debug('Terminating process running %s', ' '.join(self.cmd_args))
self.process.terminate()
self.join()
time.sleep(1)
return
log_loc = './benchmark'
LOGGER = setup_logging(log_loc)
class Network(object):
def __init__(self, mode, name, img_size, batch_size):
self.mode = mode
self.name = name
self.img_size = img_size
self.batch_size = batch_size
self.gpu_speedup = collections.OrderedDict()
def parse_args():
class NetworkArgumentAction(argparse.Action):
def validate(self, attrs):
args = attrs.split(':')
if len(args) != 4 or isinstance(args[0], str) == False or isinstance(args[1], str) == False:
print('expected network attributes in format mode:network_name:batch_size:image_size \
\nThe network_name is a valid model defined as network_name.py in the image-classification/symbol folder. \
\nOr a gluon vision model defined in mxnet/python/mxnet/gluon/model_zoo/model_store.py.')
sys.exit(1)
try:
# check if the network exists
if args[0] == 'native':
importlib.import_module('symbols.' + args[1])
batch_size = int(args[2])
img_size = int(args[3])
return Network(mode=args[0], name=args[1], batch_size=batch_size, img_size=img_size)
except Exception as e:
print('expected network attributes in format mode:network_name:batch_size:image_size \
\nThe network_name is a valid model defined as network_name.py in the image-classification/symbol folder. \
\nOr a gluon vision model defined in mxnet/python/mxnet/gluon/model_zoo/model_store.py.')
print(e)
sys.exit(1)
def __init__(self, *args, **kw):
kw['nargs'] = '+'
argparse.Action.__init__(self, *args, **kw)
def __call__(self, parser, namespace, values, option_string=None):
if isinstance(values, list) == True:
setattr(namespace, self.dest, map(self.validate, values))
else:
setattr(namespace, self.dest, self.validate(values))
parser = argparse.ArgumentParser(description='Run Benchmark on various imagenet networks using train_imagenent.py')
parser.add_argument('--networks', dest='networks', nargs='+', type=str, help='one or more networks in the format mode:network_name:batch_size:image_size \
\nThe network_name is a valid model defined as network_name.py in the image-classification/symbol folder for native imagenet \
\n Or a gluon vision model defined in mxnet/python/mxnet/gluon/model_zoo/model_store.py.',
action=NetworkArgumentAction)
parser.add_argument('--worker_file', type=str,
help='file that contains a list of worker hostnames or list of worker ip addresses that can be sshed without a password.',
required=True)
parser.add_argument('--worker_count', type=int, help='number of workers to run benchmark on.', required=True)
parser.add_argument('--gpu_count', type=int, help='number of gpus on each worker to use.', required=True)
args = parser.parse_args()
return args
def series(max_count):
i = 1
s = []
while i <= max_count:
s.append(i)
i = i * 2
if s[-1] < max_count:
s.append(max_count)
return s
'''
Choose the middle iteration to get the images processed per sec
'''
def images_processed(log_loc, mode):
f = open(log_loc)
if mode == 'native':
img_per_sec = re.findall("(?:Batch\s+\[30\]\\\\tSpeed:\s+)(\d+\.\d+)(?:\s+)", str(f.readlines()))
else:
img_per_sec = re.findall("(?:Batch\s+\[3\]\\\\tSpeed:\s+)(\d+\.\d+)(?:\s+)", str(f.readlines()))
f.close()
img_per_sec = map(float, img_per_sec)
total_img_per_sec = sum(img_per_sec)
return total_img_per_sec
def generate_hosts_file(num_nodes, workers_file, args_workers_file):
f = open(workers_file, 'w')
output = subprocess.check_output(['head', '-n', str(num_nodes), args_workers_file])
f.write(output)
f.close()
return
def stop_old_processes(hosts_file, prog_name):
stop_args = ['python', '../../tools/kill-mxnet.py', hosts_file, 'python', prog_name]
stop_args_str = ' '.join(stop_args)
LOGGER.info('killing old remote processes\n %s', stop_args_str)
stop = subprocess.check_output(stop_args, stderr=subprocess.STDOUT)
LOGGER.debug(stop)
time.sleep(1)
def run_benchmark(kv_store, data_shape, batch_size, num_gpus, num_nodes, network, args_workers_file, mode):
if mode == 'native':
benchmark_args = ['python', 'train_imagenet.py', '--gpus', ','.join(str(i) for i in range(num_gpus)), \
'--network', network, '--batch-size', str(batch_size * num_gpus), \
'--image-shape', '3,' + str(data_shape) + ',' + str(data_shape), '--num-epochs', '1',
'--kv-store', kv_store, '--benchmark', '1', '--disp-batches', '10']
else:
benchmark_args = ['python', '../gluon/image_classification.py', '--dataset', 'dummy', '--gpus', str(num_gpus), \
'--epochs', '1', '--benchmark', '--mode', mode, '--model', network, '--batch-size',
str(batch_size), \
'--log-interval', str(1), '--kvstore', kv_store]
log = log_loc + '/' + network + '_' + str(num_nodes * num_gpus) + '_log'
hosts = log_loc + '/' + network + '_' + str(num_nodes * num_gpus) + '_workers'
generate_hosts_file(num_nodes, hosts, args_workers_file)
if mode == 'native':
stop_old_processes(hosts, 'train_imagenet.py')
else:
stop_old_processes(hosts, '../gluon/image-classification.py')
launch_args = ['../../tools/launch.py', '-n', str(num_nodes), '-s', str(num_nodes * 2), '-H', hosts,
' '.join(benchmark_args)]
# use train_imagenet/image_classification when running on a single node
if kv_store == 'device':
imagenet = RunCmd(benchmark_args, log)
imagenet.startCmd(timeout=60 * 10)
else:
launch = RunCmd(launch_args, log)
launch.startCmd(timeout=60 * 10)
if mode == 'native':
stop_old_processes(hosts, 'train_imagenet.py')
else:
stop_old_processes(hosts, '../gluon/image-classification.py')
img_per_sec = images_processed(log, mode)
LOGGER.info('network: %s, num_gpus: %d, image/sec: %f', network, num_gpus * num_nodes, img_per_sec)
return img_per_sec
def plot_graph(args):
speedup_chart = pygal.Line(x_title='gpus', y_title='speedup', logarithmic=True)
speedup_chart.x_labels = map(str, series(args.worker_count * args.gpu_count))
speedup_chart.add('ideal speedup', series(args.worker_count * args.gpu_count))
for net in args.networks:
image_single_gpu = net.gpu_speedup[1] if 1 in net.gpu_speedup or not net.gpu_speedup[1] else 1
y_values = [each / image_single_gpu for each in net.gpu_speedup.values()]
LOGGER.info('%s: image_single_gpu:%.2f' % (net.name, image_single_gpu))
LOGGER.debug('network:%s, y_values: %s' % (net.name, ' '.join(map(str, y_values))))
speedup_chart.add(net.name, y_values \
, formatter=lambda y_val, img=copy.deepcopy(image_single_gpu), batch_size=copy.deepcopy(
net.batch_size): 'speedup:%.2f, img/sec:%.2f, batch/gpu:%d' % \
(0 if y_val is None else y_val, 0 if y_val is None else y_val * img, batch_size))
speedup_chart.render_to_file(log_loc + '/speedup.svg')
def write_csv(log_loc, args):
for net in args.networks:
with open(log_loc + '/' + net.name + '.csv', 'wb') as f:
w = csv.writer(f)
w.writerow(['num_gpus', 'img_processed_per_sec'])
w.writerows(net.gpu_speedup.items())
def main():
args = parse_args()
for net in args.networks:
# use kv_store='device' when running on 1 node
for num_gpus in series(args.gpu_count):
imgs_per_sec = run_benchmark(kv_store='device', data_shape=net.img_size, batch_size=net.batch_size, \
num_gpus=num_gpus, num_nodes=1, network=net.name,
args_workers_file=args.worker_file, mode=net.mode)
net.gpu_speedup[num_gpus] = imgs_per_sec
for num_nodes in series(args.worker_count)[1::]:
imgs_per_sec = run_benchmark(kv_store='dist_sync_device', data_shape=net.img_size,
batch_size=net.batch_size, \
num_gpus=args.gpu_count, num_nodes=num_nodes, network=net.name,
args_workers_file=args.worker_file, mode=net.mode)
net.gpu_speedup[num_nodes * args.gpu_count] = imgs_per_sec
LOGGER.info('Network: %s (num_gpus, images_processed): %s', net.name, ','.join(map(str, net.gpu_speedup.items())))
write_csv(log_loc, args)
plot_graph(args)
if __name__ == '__main__':
main()