forked from GoogleCloudPlatform/cluster-toolkit
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ml-slurm-v5-legacy.yaml
291 lines (260 loc) · 9.43 KB
/
ml-slurm-v5-legacy.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
---
blueprint_name: ml-slurm
vars:
project_id: ## Set project id here
deployment_name: ml-example
region: asia-southeast1
zone: asia-southeast1-b
zones:
- asia-southeast1-a
- asia-southeast1-b
- asia-southeast1-c
new_image:
family: ml-slurm
project: $(vars.project_id)
disk_size_gb: 200
# Recommended to use GCS backend for Terraform state
# See https://github.com/GoogleCloudPlatform/hpc-toolkit/tree/main/examples#optional-setting-up-a-remote-terraform-state
#
# terraform_backend_defaults:
# type: gcs
# configuration:
# bucket: <<BUCKET_NAME>>
deployment_groups:
- group: primary
modules:
- id: network
source: modules/network/pre-existing-vpc
# this example anticipates that the VPC default network has internal traffic
# allowed and IAP tunneling for SSH connections
- id: firewall_rule
source: modules/network/firewall-rules
use:
- network
settings:
ingress_rules:
- name: $(vars.deployment_name)-allow-internal-traffic
description: Allow internal traffic
destination_ranges:
- $(network.subnetwork_address)
source_ranges:
- $(network.subnetwork_address)
allow:
- protocol: tcp
ports:
- 0-65535
- protocol: udp
ports:
- 0-65535
- protocol: icmp
- name: $(vars.deployment_name)-allow-iap-ssh
description: Allow IAP-tunneled SSH connections
destination_ranges:
- $(network.subnetwork_address)
source_ranges:
- 35.235.240.0/20
allow:
- protocol: tcp
ports:
- 22
- id: homefs
source: modules/file-system/filestore
use:
- network
settings:
local_mount: /home
size_gb: 2560
filestore_tier: BASIC_SSD
- id: script
source: modules/scripts/startup-script
settings:
runners:
- type: shell
destination: install-ml-libraries.sh
content: |
#!/bin/bash
# this script is designed to execute on Slurm images published by SchedMD that:
# - are based on Debian 11 distribution of Linux
# - have NVIDIA Drivers v530 pre-installed
# - have CUDA Toolkit 12.1 pre-installed.
set -e -o pipefail
echo "deb https://packages.cloud.google.com/apt google-fast-socket main" > /etc/apt/sources.list.d/google-fast-socket.list
apt-get update --allow-releaseinfo-change
apt-get install --assume-yes google-fast-socket
CONDA_BASE=/opt/conda
if [ -d $CONDA_BASE ]; then
exit 0
fi
DL_DIR=\$(mktemp -d)
cd $DL_DIR
curl -O https://repo.anaconda.com/miniconda/Miniconda3-py310_23.3.1-0-Linux-x86_64.sh
HOME=$DL_DIR bash Miniconda3-py310_23.3.1-0-Linux-x86_64.sh -b -p $CONDA_BASE
cd -
rm -rf $DL_DIR
unset DL_DIR
source $CONDA_BASE/bin/activate base
conda init --system
conda config --system --set auto_activate_base False
# following channel ordering is important! use strict_priority!
conda config --system --set channel_priority strict
conda config --system --remove channels defaults
conda config --system --add channels conda-forge
conda config --system --add channels nvidia
conda config --system --add channels nvidia/label/cuda-11.8.0
conda update -n base conda --yes
### create a virtual environment for tensorflow
conda create -n tf python=3.10 --yes
conda activate tf
conda install -n tf cuda-toolkit --yes
pip install nvidia-cudnn-cu11 nvidia-nccl-cu11
cd $CONDA_PREFIX/lib/python3.10/site-packages/nvidia/nccl/lib/
ln -s libnccl.so.2 libnccl.so
cd -
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
echo 'export OLD_LD_LIBRARY_PATH=$LD_LIBRARY_PATH' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
echo 'NVIDIA_PYTHON_PATH=$CONDA_PREFIX/lib/python3.10/site-packages/nvidia' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$NVIDIA_PYTHON_PATH/cudnn/lib/:$NVIDIA_PYTHON_PATH/nccl/lib/' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
mkdir -p $CONDA_PREFIX/etc/conda/deactivate.d
echo 'export LD_LIBRARY_PATH=${OLD_LD_LIBRARY_PATH}' > $CONDA_PREFIX/etc/conda/deactivate.d/env_vars.sh
echo 'unset OLD_LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/deactivate.d/env_vars.sh
pip install tensorflow==2.12.*
pip install tensorrt==8.6.*
### create a virtual environment for pytorch
conda create -n pytorch python=3.10 --yes
conda activate pytorch
conda config --env --add channels pytorch
conda install -n pytorch pytorch torchvision torchaudio pytorch-cuda=11.8 --yes
- group: packer
modules:
- id: custom-image
source: modules/packer/custom-image
kind: packer
use:
- network
- script
settings:
# give VM a public IP to ensure startup script can reach public internet
# w/o new VPC
omit_external_ip: false
source_image_project_id: [schedmd-slurm-public]
# see latest in https://github.com/GoogleCloudPlatform/slurm-gcp/blob/master/docs/images.md#published-image-family
source_image_family: slurm-gcp-5-12-debian-11
# You can find size of source image by using following command
# gcloud compute images describe-from-family <source_image_family> --project schedmd-slurm-public
disk_size: $(vars.disk_size_gb)
image_family: $(vars.new_image.family)
# building this image does not require a GPU-enabled VM
machine_type: c2-standard-4
state_timeout: 15m
- group: cluster
modules:
- id: examples
source: modules/scripts/startup-script
settings:
runners:
- type: data
destination: /var/tmp/torch_test.sh
content: |
#!/bin/bash
source /etc/profile.d/conda.sh
conda activate pytorch
python3 torch_test.py
- type: data
destination: /var/tmp/torch_test.py
content: |
import torch
import torch.utils.benchmark as benchmark
def batched_dot_mul_sum(a, b):
'''Computes batched dot by multiplying and summing'''
return a.mul(b).sum(-1)
def batched_dot_bmm(a, b):
'''Computes batched dot by reducing to bmm'''
a = a.reshape(-1, 1, a.shape[-1])
b = b.reshape(-1, b.shape[-1], 1)
return torch.bmm(a, b).flatten(-3)
# use GPU if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
if device.type == 'cuda':
print(torch.cuda.get_device_name(0))
# benchmarking
x = torch.randn(10000, 64)
t0 = benchmark.Timer(
stmt='batched_dot_mul_sum(x, x)',
setup='from __main__ import batched_dot_mul_sum',
globals={'x': x})
t1 = benchmark.Timer(
stmt='batched_dot_bmm(x, x)',
setup='from __main__ import batched_dot_bmm',
globals={'x': x})
print(t0.timeit(100))
print(t1.timeit(100))
- id: a2_node_group
source: community/modules/compute/schedmd-slurm-gcp-v5-node-group
settings:
node_count_dynamic_max: 20
bandwidth_tier: gvnic_enabled
machine_type: a2-highgpu-1g
instance_image: $(vars.new_image)
instance_image_custom: true
- id: a2_partition
source: community/modules/compute/schedmd-slurm-gcp-v5-partition
use:
- a2_node_group
- homefs
- network
settings:
partition_name: a2
is_default: true
- id: g2_node_group
source: community/modules/compute/schedmd-slurm-gcp-v5-node-group
settings:
node_count_dynamic_max: 20
bandwidth_tier: gvnic_enabled
machine_type: g2-standard-4
instance_image: $(vars.new_image)
instance_image_custom: true
- id: g2_partition
source: community/modules/compute/schedmd-slurm-gcp-v5-partition
use:
- g2_node_group
- homefs
- network
settings:
partition_name: g2
enable_placement: false
exclusive: false
- id: slurm_controller
source: community/modules/scheduler/schedmd-slurm-gcp-v5-controller
use:
- network
- a2_partition
- g2_partition
- homefs
settings:
disable_controller_public_ips: false
instance_image: $(vars.new_image)
instance_image_custom: true
- id: slurm_login
source: community/modules/scheduler/schedmd-slurm-gcp-v5-login
use:
- examples
- network
- slurm_controller
settings:
disable_login_public_ips: false
instance_image: $(vars.new_image)
instance_image_custom: true