forked from nwojke/cosine_metric_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
queued_trainer.py
588 lines (499 loc) · 21.8 KB
/
queued_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# vim: expandtab:ts=4:sw=4
import string
import os
import threading
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
def run_in_batches(f, data_dict, out, batch_size):
"""Process data in batches.
Parameters
----------
f : Callable[Dict[tf.Tensor, np.ndarray] -> np.ndarray
A function that maps a given input (one or multiple inpu arrays) to a
single output array.
data_dict : Dict[tf.Tensor, np.ndarray]
Maps from symbolic input tensor to numpy data array.
out : np.ndarray
The computed function output will be stored in this array; must be have
compatible shape and length to the output computed by `f`.
batch_size : int
The number of samples to compute in each call to `f`. If the length of
the input array is not divisible by the batch size, the final call to
`f` contains fewer examples.
"""
data_len = len(out)
num_batches = int(data_len / batch_size)
def pad(x):
x = np.asarray(x)
y = np.full((batch_size, ) + x.shape[1:], x[0], dtype=x.dtype)
y[:x.shape[0]] = x
return y
s, e = 0, batch_size
for i in range(num_batches):
s, e = i * batch_size, (i + 1) * batch_size
batch_data_dict = {k: v[s:e] for k, v in data_dict.items()}
out[s:e] = f(batch_data_dict)
if e < len(out):
remaining_len = len(out) - e
batch_data_dict = {k: pad(v[e:]) for k, v in data_dict.items()}
out[e:] = f(batch_data_dict)[:remaining_len]
def iterate_forever(batch_size, data, *other_data):
"""Iterate over dataset indefenitely.
Parameters
----------
batch_size : int
The batch size.
data : ndarray
The first input array.
other_data
Additional input arrays; must be of type np.ndarray.
Returns
-------
List[np.ndarray]
A dataset batch. The length of each entry in the list is `batch_size`.
"""
data_len = len(data)
num_batches = int(data_len / batch_size)
while True:
data_list = [data] + list(other_data)
s, e = 0, 0
for i in range(num_batches):
s, e = i * batch_size, (i + 1) * batch_size
batch = [x[s:e] for x in data_list]
yield batch[0] if len(batch) == 1 else batch
if e < data_len:
batch = [x[e:] for x in data_list]
yield batch[0] if len(batch) == 1 else batch
def random_shuffle_forever(batch_size, data, *other_data):
"""A generator that randomly selects `batch_size` entries from the data.
Parameters
----------
batch_size : int
The batch size.
data : np.ndarray
The first input array.
other_data
Additional input arrays; must be of type np.ndarray
Returns
-------
List[np.ndarray]
A batch of randomly selected entries. The length of each entry in the
list is `batch_size`.
"""
data_list = [data] + list(other_data)
indices = np.arange(len(data))
while True:
batch_indices = np.random.choice(indices, batch_size, replace=False)
batch = [x[batch_indices] for x in data_list]
yield batch[0] if len(batch) == 1 else batch
def random_sample_identities_forever(batch_size, num_samples_per_id, data_x,
data_y, num_fa_images=0):
"""A generator that randomly selects a fixed number of entries per label.
If false alarms are passed into this function, they should have a negative
label, i.e., `data_y[i] < 0` if the i-th example corresponds to a false
alarm.
Parameters
----------
batch_size : int
The batch size.
num_samples_per_id : int
Number of examples per label in each batch. If the `batch_size` is not
divisible by `num_samples_per_id` then the batch is filled with false
alarms. A warning is printed if no false alarms are available to fill
up the batch.
data_x : List[string] | np.ndarray
The data array; either a list of filenames or a tensor of input images.
data_y : List[int] | np.ndarray
The label array (either as list of one-dimensional numpy array).
num_fa_images : Optional[int]
Number of false alarm images to include in each batch; defaults to zero.
Returns
-------
List[np.ndarray]
Returns a list of length two where the first entry is the data array
corresponding to `data_x` and the second entry is the label array
corresponding to `data_y`. The elements in the list are of length
`batch_size`.
"""
assert (batch_size - num_fa_images) % num_samples_per_id == 0
num_ids_per_batch = int((batch_size - num_fa_images) / num_samples_per_id)
data_x = np.asarray(data_x)
data_y = np.asarray(data_y)
unique_y = np.unique(data_y[data_y >= 0])
y_to_idx = {y: np.where(data_y == y)[0] for y in unique_y}
fa_indices = np.where(data_y < 0)[0]
while True:
# Draw the desired number of identities.
indices = np.random.choice(
len(unique_y), num_ids_per_batch, replace=False)
batch_unique_y = unique_y[indices]
batch_x = np.zeros((batch_size, ) + data_x.shape[1:], data_x.dtype)
batch_y = np.zeros((batch_size, ), data_y.dtype)
e = 0
for i, y in enumerate(batch_unique_y):
num_samples = min(num_samples_per_id, len(y_to_idx[y]))
indices = np.random.choice(y_to_idx[y], num_samples, replace=False)
s, e = e, e + num_samples
batch_x[s:e] = data_x[indices]
batch_y[s:e] = y
# Fill up remaining space with false alarms.
num_samples = len(batch_x) - e
if num_fa_images > 0:
num_batch_fa_samples = min(num_samples, len(fa_indices))
indices = np.random.choice(
fa_indices, num_batch_fa_samples, replace=False)
s, e = e, e + num_batch_fa_samples
batch_x[s:e] = data_x[indices]
batch_y[s:e] = data_y[indices]
# If we need to add more data, random sample ids until we have reached
# the batch size.
num_samples = len(batch_x) - e
num_tries = 0
while num_samples > 0 and num_tries < 100:
y = np.random.choice(unique_y)
if y in batch_unique_y:
# Find a target that we have not yet in this batch.
num_tries += 1
continue
num_samples = min(num_samples, len(y_to_idx[y]))
indices = np.random.choice(y_to_idx[y], num_samples, replace=False)
s, e = e, e + num_samples
batch_x[s:e] = data_x[indices]
batch_y[s:e] = y
num_samples = len(batch_x) - e
if e < batch_size:
print("ERROR: Failed to sample a full batch. Adding corrupt data.")
yield [batch_x, batch_y]
def _truncate_dataset_to_batch_size(batch_size, data, *other_data):
"""Truncate given input data to a multiple of the batch size.
Parameters
----------
batch_size : int
The batch size. The length of the truncated data is a multiple of this
value.
data : np.ndarray
The first input array.
*other_data
Additional input arrays; must be of type np.ndarray.
Returns
-------
List[np.ndarray]
The truncated data. The length of each entry in the list is a multiple
of the batch size.
"""
num_batches = int(len(data) / batch_size)
new_len = num_batches * batch_size
dataset = [data] + list(other_data)
if new_len < len(data):
print(
"WARNING dataset length is not a multiple of batch size. "
"Truncating from %d to %d." % (len(data), new_len))
dataset = [x[:new_len] for x in dataset]
return num_batches, dataset[0] if len(dataset) == 1 else dataset
def _generate_run_id(size=6, chars=None):
"""Generate a random ID of length `size`.
Parameters
----------
size : int
chars : Optional[str]
Optional list of characters to use for generating the ID.
Returns
-------
str
Returns a random identifier of length `size`.
"""
if chars is None:
chars = string.ascii_uppercase + string.digits
import random
return ''.join(random.choice(chars) for _ in range(size))
class ThreadSafeIterator(object):
"""
This class wraps an iterator (or generator) such that only one thread at a
time is granted access.
Parameters
----------
iterator_or_generator
An iterator or generator to be wrapped.
"""
def __init__(self, iterator_or_generator):
self._iterator_or_generator = iterator_or_generator
self._lock = threading.Lock()
def __iter__(self):
return self
def __next__(self):
with self._lock:
return next(self._iterator_or_generator)
def next(self):
with self._lock:
return self._iterator_or_generator.next()
class QueuedTrainer(object):
"""
This class implements code to train and evaluate TensorFlow models based on
TensorFlow-Slim. Image loading and preprocessing is de-coupled from the
training steps using a tf.FIFOQueue.
Parameters
----------
enqueue_vars : List[tf.Tensor]
A list of tensors to be enqueued; usually the labels and preprocessed
images.
input_vars : Optional[List[tf.Tensor]]
An optional list of input tensors; usually the labels and raw (not
preprocessed) images or filenames to the images. The list must be of the
same length as the `enqueue_vars` and there must be a one-to-one
correspondence, i.e., the i-th element in `enqueue_vars` is i-th
preprocessed element in `input_vars`. If None, the input_vars are set to
`enqueue_vars`.
num_enqueue_threads : Optional[int]
Number of threads used to preprocess data in parallel.
queue_capacity : Optional[int]
Maximum number of elements in the queue; defaults to 512.
"""
def __init__(self, enqueue_vars, input_vars=None, num_enqueue_threads=4,
queue_capacity=512):
if input_vars is None:
input_vars = enqueue_vars
self._input_vars = input_vars
self._enqueue_vars = enqueue_vars
shapes = [var.get_shape().as_list()[1:] for var in enqueue_vars]
dtypes = [var.dtype for var in enqueue_vars]
self._queue = tf.FIFOQueue(queue_capacity, dtypes, shapes)
self._num_enqueue_threads = num_enqueue_threads
self._enqueue_threads = []
self._enqueue_op = self._queue.enqueue_many(self._enqueue_vars)
self._stop_op = self._queue.close(cancel_pending_enqueues=True)
self._coordinator = None
self._feed_generator = None
self._batch_size = None
self._init_fns = []
def get_input_vars(self, batch_size):
"""Get the top `batch_size` elements from the queue. The tensors
returned by this functions should be passed on the the TensorFlow model.
Parameters
----------
batch_size : int
The batch size.
Returns
-------
List[tf.Tensor]
Returns the top `batch_size` elements from the queue. There is a
one-to-one correspondence between the `enqueue_vars` passed in to
the constructor of this class and the tensors in the list returned
by this function.
"""
self._batch_size = batch_size
return self._queue.dequeue_many(batch_size)
def run(self, feed_generator, train_op, log_dir="/tmp/slim_trainer/",
restore_path=None, variables_to_restore=None, run_id=None,
max_checkpoints_to_keep=0, **kwargs):
""" Run training.
Parameters
----------
feed_generator : Iterator[ndarray, ...]
An iterator or generator that returns batches of training data; must
return a one-to-one correspondence with the `enqueue_vars` passed
to the constructor of this class.
train_op : tf.Tensor
The training operation created with `slim.learning.create_train_op`.
log_dir : Optional[str]
Path to TensorFlow log directory. This value is used in conjunction
with `run_id` to generate the checkpoint and summary directory;
defaults to '/tmp/slim_trainer'.
restore_path : Optional[str]
An optional checkpoint path. If not None, resumes training from the
given checkpoint.
variables_to_restore : Optional[List[str]]
An optional list of variable scopes. If not None, only restores
variables under the given scope. This value is ignored if
`restore_path` is None.
run_id : Optional[str]
A string that identifies this training run. The checkpoints and
TensorFlow summaries are stored in `log_dir/run_id`. If None, a
random ID will be generated. Point tensorboard to this directory to
monitor training progress.
max_checkpoints_to_keep : int
Keep only the `max_checkpoints_to_keep` newest checkpoints. If 0,
keep all checkpoints.
kwargs:
Additional named arguments passed on to tf.slim.learning.train,
e.g., `number_of_steps=100` to run 100 iterations of training.
"""
if restore_path is not None:
if variables_to_restore is None:
variables_to_restore = slim.get_variables_to_restore()
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
restore_path, variables_to_restore)
self._init_fns.append(lambda sess: sess.run(
init_assign_op, init_feed_dict))
self._feed_generator = ThreadSafeIterator(feed_generator)
self._coordinator = tf.train.Coordinator()
if run_id is None:
run_id = _generate_run_id(6)
log_dir = os.path.join(log_dir, run_id)
print("---------------------------------------")
print("Run ID: ", run_id)
print("Log directory: ", log_dir)
print("---------------------------------------")
saver = tf.train.Saver(max_to_keep=max_checkpoints_to_keep)
try:
slim.learning.train(
train_op, log_dir, self._train_step_fn, saver=saver,
**kwargs)
except UnboundLocalError:
# NOTE(nwojke): Due to a bug in slim, a local variable 'total_loss'
# is referenced when an exception is raised during training. We
# catch the exception here because it occurs whenever we close the
# queue with self._stop_all_threads().
pass
self._wait_for_threads()
def evaluate(self, dataset, checkpoint_dir, log_dir, run_id=None,
init_op=None, eval_op=None, final_op=None,
summary_op=None, variables_to_restore=None,
eval_interval_secs=60, max_num_evaluations=None):
"""Run evaluation. Monitors files in the log directory and computes
evaluation metrics. This function must be called concurrently to
training (in a separate process).
WARNING: The dataset is truncated to the batch size. Thus, the computed
metrics are only accurate if the dataset length is divisible by the
batch size.
Parameters
----------
dataset : List[T]
The dataset is a list (or tuple) of data arrays. The length of the
list must be the same as the `input_vars` passed to the constructor
of this class and there must be a one-to-one correspondence such
that `dataset[i]` corresponds to the numeric data of its symbolic
equivalent in `input_vars[i]`.
checkpoint_dir : str
The directory where checkpoints are stored. Should be set to
`log_dir` of the training process.
log_dir : str
Path to TensorFlow log directory where evaluation logs will be
stored. This directory should be different from the `log_dir`
passed to `run`.
run_id : Optional[str]
A string that identifies the training runrun. Should be set to
`run_id` passed to `run`.
init_op : Optional[tf.Tensor]
Optional operation to execute prior to processing the `dataset`.
eval_op : Optional[tf.Tensor]
Evaluation operation; will be executed for each batch in the
`dataset`.
final_op : Optional[tf.Tensor]
Optional operation to execute after processing the `dataset`.
summary_op : Optional[tf.Tensor]
Summary operation; defaults to `tf.summary.merge_all()`.
variables_to_restore : Optional[List[tf.Tensor]]
List of variables to restore; defaults to
`slim.get_variables_to_restore()`.
eval_interval_secs : Optional[int]
Poll the `checkpoint_dir` every `eval_interval_secs` seconds for
new checkpoints.
max_num_evaluations : Optional[int]
Evaluate at most `max_num_evaluations` checkpoints.
Returns
-------
T
Returns the value of the last call to `final_op` or None.
"""
if run_id is None:
print("---------------------------------------")
print("Checkpoint directory: ", checkpoint_dir)
print("Log directory: ", log_dir)
print("---------------------------------------")
else:
checkpoint_dir = os.path.join(checkpoint_dir, run_id)
log_dir = os.path.join(log_dir, run_id)
print("---------------------------------------")
print("Run ID: ", run_id)
print("Checkpoint directory: ", checkpoint_dir)
print("Log directory: ", log_dir)
print("---------------------------------------")
if summary_op is None:
summary_op = tf.summary.merge_all()
global_step = tf.train.get_or_create_global_step()
if variables_to_restore is None:
variables_to_restore = slim.get_variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
summary_writer = tf.summary.FileWriter(log_dir)
sv = tf.train.Supervisor(
graph=tf.get_default_graph(), logdir=log_dir, summary_op=None,
summary_writer=None, global_step=None, saver=saver)
print("Entering evaluation loop. Waiting for checkpoints.")
num_batches, dataset = _truncate_dataset_to_batch_size(
self._batch_size, *dataset)
final_op_value = None
num_evaluations = 0
for checkpoint_path in slim.evaluation.checkpoints_iterator(
checkpoint_dir, eval_interval_secs):
with sv.managed_session(start_standard_services=False) as session:
sv.saver.restore(session, checkpoint_path)
sv.start_queue_runners(session)
print("Starting evaluation of '%s'" % checkpoint_path)
self._feed_generator = iterate_forever(
self._batch_size, *dataset)
self._coordinator = tf.train.Coordinator()
for fn in self._init_fns:
fn(session)
self._start_enqueue(session, num_threads=1)
if init_op is not None:
session.run(init_op)
if eval_op is not None:
for i in range(num_batches):
session.run(eval_op)
if final_op is not None:
final_op_value = session.run(final_op)
else:
final_op_value = None
summary_str = session.run(summary_op)
global_step_value = session.run(global_step)
summary_writer.add_summary(summary_str, global_step_value)
summary_writer.flush()
self._stop_all_threads(session)
print("Finished evaluation of '%s'" % checkpoint_path)
num_evaluations += 1
if max_num_evaluations is not None \
and num_evaluations >= max_num_evaluations:
break
return final_op_value
def _train_step_fn(self, session, train_op, global_step,
train_step_kwargs):
if len(self._enqueue_threads) == 0:
for fn in self._init_fns:
fn(session)
self._start_enqueue(session)
total_loss, should_stop = slim.learning.train_step(
session, train_op, global_step, train_step_kwargs)
if should_stop or self._coordinator.should_stop():
self._stop_all_threads(session)
return total_loss, should_stop
def _stop_all_threads(self, session):
self._coordinator.request_stop()
session.run(self._stop_op) # Close the queue.
def _wait_for_threads(self):
self._coordinator.join(self._enqueue_threads)
self._enqueue_threads = []
def _start_enqueue(self, session, num_threads=None):
if num_threads is None:
num_threads = self._num_enqueue_threads
for _ in range(num_threads):
thread = threading.Thread(
target=self._run_enqueue_thread, args=(session, ))
thread.start()
self._enqueue_threads.append(thread)
def _run_enqueue_thread(self, session):
try:
for data in self._feed_generator:
if self._coordinator.should_stop():
break
try:
feed_dict = {
var: value for var, value in
zip(self._input_vars, data)}
session.run(self._enqueue_op, feed_dict=feed_dict)
except (tf.errors.CancelledError, tf.errors.AbortedError):
# We have been requested to stop enqueuing data.
break
except Exception as e:
print("EnqueueError:", e)
self._stop_all_threads(session)