-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastrobwt_optimized.go
225 lines (187 loc) · 6.01 KB
/
astrobwt_optimized.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
package astrobwt
//import "os"
//import "fmt"
import (
"encoding/binary"
"sync"
"golang.org/x/crypto/salsa20/salsa"
"golang.org/x/crypto/sha3"
)
// see here to improve the algorithms more https://github.com/y-256/libdivsufsort/blob/wiki/SACA_Benchmarks.md
// Original implementation was in xmrig miner, however it had a flaw which has been fixed
// this optimized algorithm is used only in the miner and not in the blockchain
//const stage1_length int = 147253 // it is a prime
//const max_length int = 1024*1024 + stage1_length + 1024
type Data struct {
stage1 [stage1_length + 64]byte // stages are taken from it
stage1_result [stage1_length + 1]byte
stage2 [1024*1024 + stage1_length + 1 + 64]byte
stage2_result [1024*1024 + stage1_length + 1]byte
indices [ALLOCATION_SIZE]uint64
tmp_indices [ALLOCATION_SIZE]uint64
}
var pool = sync.Pool{New: func() interface{} { return &Data{} }}
func POW_optimized_v1(inputdata []byte, max_limit int) (outputhash [32]byte, success bool) {
data := pool.Get().(*Data)
outputhash, success = POW_optimized_v2(inputdata, max_limit, data)
pool.Put(data)
return
}
func POW_optimized_v2(inputdata []byte, max_limit int, data *Data) (outputhash [32]byte, success bool) {
var counter [16]byte
for i := range data.stage1 {
data.stage1[i] = 0
}
/* for i := range data.stage1_result{
data.stage1_result[i] =0
}*/
key := sha3.Sum256(inputdata)
salsa.XORKeyStream(data.stage1[1:stage1_length+1], data.stage1[1:stage1_length+1], &counter, &key)
sort_indices(stage1_length+1, data.stage1[:], data.stage1_result[:], data)
key = sha3.Sum256(data.stage1_result[:])
stage2_length := stage1_length + int(binary.LittleEndian.Uint32(key[:])&0xfffff)
if stage2_length > max_limit {
for i := range outputhash { // will be optimized by compiler
outputhash[i] = 0xff
}
success = false
return
}
for i := range counter { // will be optimized by compiler
counter[i] = 0
}
salsa.XORKeyStream(data.stage2[1:stage2_length+1], data.stage2[1:stage2_length+1], &counter, &key)
sort_indices(stage2_length+1, data.stage2[:], data.stage2_result[:], data)
key = sha3.Sum256(data.stage2_result[:stage2_length+1])
for i := range data.stage2 {
data.stage2[i] = 0
}
copy(outputhash[:], key[:])
success = true
return
}
const COUNTING_SORT_BITS uint64 = 10
const COUNTING_SORT_SIZE uint64 = 1 << COUNTING_SORT_BITS
const ALLOCATION_SIZE = MAX_LENGTH
func BigEndian_Uint64(b []byte) uint64 {
_ = b[7] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
}
func smaller(input []uint8, a, b uint64) bool {
value_a := a >> 21
value_b := b >> 21
if value_a < value_b {
return true
}
if value_a > value_b {
return false
}
data_a := BigEndian_Uint64(input[(a%(1<<21))+5:])
data_b := BigEndian_Uint64(input[(b%(1<<21))+5:])
return data_a < data_b
}
// basically
func sort_indices(N int, input_extra []byte, output []byte, d *Data) {
var counters [2][COUNTING_SORT_SIZE]uint32
indices := d.indices[:]
tmp_indices := d.tmp_indices[:]
input := input_extra[1:]
loop3 := N / 3 * 3
for i := 0; i < loop3; i += 3 {
k0 := BigEndian_Uint64(input[i:])
counters[0][(k0>>(64-COUNTING_SORT_BITS*2))&(COUNTING_SORT_SIZE-1)]++
counters[1][k0>>(64-COUNTING_SORT_BITS)]++
k1 := k0 << 8
counters[0][(k1>>(64-COUNTING_SORT_BITS*2))&(COUNTING_SORT_SIZE-1)]++
counters[1][k1>>(64-COUNTING_SORT_BITS)]++
k2 := k0 << 16
counters[0][(k2>>(64-COUNTING_SORT_BITS*2))&(COUNTING_SORT_SIZE-1)]++
counters[1][k2>>(64-COUNTING_SORT_BITS)]++
}
if N%3 != 0 {
for i := loop3; i < N; i++ {
k := BigEndian_Uint64(input[i:])
counters[0][(k>>(64-COUNTING_SORT_BITS*2))&(COUNTING_SORT_SIZE-1)]++
counters[1][k>>(64-COUNTING_SORT_BITS)]++
}
}
/*
for i := 0; i < N ; i++{
k := BigEndian_Uint64(input[i:])
counters[0][(k >> (64 - COUNTING_SORT_BITS * 2)) & (COUNTING_SORT_SIZE - 1)]++
counters[1][k >> (64 - COUNTING_SORT_BITS)]++
}
*/
prev := [2]uint32{counters[0][0], counters[1][0]}
counters[0][0] = prev[0] - 1
counters[1][0] = prev[1] - 1
var cur [2]uint32
for i := uint64(1); i < COUNTING_SORT_SIZE; i++ {
cur[0], cur[1] = counters[0][i]+prev[0], counters[1][i]+prev[1]
counters[0][i] = cur[0] - 1
counters[1][i] = cur[1] - 1
prev[0] = cur[0]
prev[1] = cur[1]
}
for i := N - 1; i >= 0; i-- {
k := BigEndian_Uint64(input[i:])
// FFFFFFFFFFE00000 = (0xFFFFFFFFFFFFFFF<< 21) // to clear bottom 21 bits
tmp := counters[0][(k>>(64-COUNTING_SORT_BITS*2))&(COUNTING_SORT_SIZE-1)]
counters[0][(k>>(64-COUNTING_SORT_BITS*2))&(COUNTING_SORT_SIZE-1)]--
tmp_indices[tmp] = (k & 0xFFFFFFFFFFE00000) | uint64(i)
}
for i := N - 1; i >= 0; i-- {
data := tmp_indices[i]
tmp := counters[1][data>>(64-COUNTING_SORT_BITS)]
counters[1][data>>(64-COUNTING_SORT_BITS)]--
indices[tmp] = data
}
prev_t := indices[0]
for i := 1; i < N; i++ {
t := indices[i]
if smaller(input, t, prev_t) {
t2 := prev_t
j := i - 1
for {
indices[j+1] = prev_t
j--
if j < 0 {
break
}
prev_t = indices[j]
if !smaller(input, t, prev_t) {
break
}
}
indices[j+1] = t
t = t2
}
prev_t = t
}
// optimized unrolled code below this comment
/*for i := 0; i < N;i++{
output[i] = input_extra[indices[i] & ((1 << 21) - 1) ]
}*/
loop4 := ((N + 1) / 4) * 4
for i := 0; i < loop4; i += 4 {
output[i+0] = input_extra[indices[i+0]&((1<<21)-1)]
output[i+1] = input_extra[indices[i+1]&((1<<21)-1)]
output[i+2] = input_extra[indices[i+2]&((1<<21)-1)]
output[i+3] = input_extra[indices[i+3]&((1<<21)-1)]
}
for i := loop4; i < N; i++ {
output[i] = input_extra[indices[i]&((1<<21)-1)]
}
// there is an issue above, if the last byte of input is 0x00, initialbytes are wrong, this fix may not be complete
if N > 3 && input[N-2] == 0 {
backup_byte := output[0]
output[0] = 0
for i := 1; i < N; i++ {
if output[i] != 0 {
output[i-1] = backup_byte
break
}
}
}
}