This repository has been archived by the owner on Oct 11, 2024. It is now read-only.
forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 10
/
test_encoder_decoder_attn.py
943 lines (768 loc) · 36.9 KB
/
test_encoder_decoder_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
"""
Tests:
* E2E test of Encoder attention + Decoder self-attention +
Encoder/decoder cross-attention (collectively
"encoder/decoder attention")
* Confirm enc/dec models will fail for chunked prefill
* Confirm enc/dec models will fail for prefix caching
"""
import copy
from typing import NamedTuple, Optional
import pytest
import torch
from tests.kernels.utils import *
from tests.kernels.utils import make_causal_mask, maybe_make_long_tensor
from vllm.attention import Attention, AttentionMetadata
from vllm.attention.backends.abstract import AttentionBackend, AttentionType
from vllm.attention.backends.utils import STR_NOT_IMPL_ENC_DEC_ROCM_HIP
from vllm.utils import LIST_ENC_DEC_SUPPORTED_BACKENDS, is_hip
HEAD_SIZES = [64, 256]
NUM_HEADS = [1, 16]
BATCH_SIZES = [1, 16]
BLOCK_SIZES = [16]
BACKEND_NAMES = copy.copy(LIST_ENC_DEC_SUPPORTED_BACKENDS)
CUDA_DEVICE = "cuda:0"
MAX_DEC_SEQ_LENS = [128]
MAX_ENC_SEQ_LENS = [128]
# Narrow teest-cases for unsupported-scenario
# tests
HEAD_SIZES_FOR_UNSUPP = [HEAD_SIZES[0]]
class TestPoint(NamedTuple):
"""
Encapsulates the attributes which define a single invocation
of the test_e2e_enc_dec_attn() test
Attributes:
num_heads: The number of heads in the model.
head_size: Head dimension
backend_name: Name of the backend framework used.
batch_size: Number of samples per batch.
block_size: Size of each block of data processed.
max_dec_seq_len: Maximum sequence length for the decoder.
max_enc_seq_len: Maximum sequence length for the encoder.
num_blocks: Number of blocks in the model.
"""
num_heads: int
head_size: int
backend_name: str
batch_size: int
block_size: int
max_dec_seq_len: int
max_enc_seq_len: int
num_blocks: int
class TestResources(NamedTuple):
'''
Encapsulates key components for performing an
encoder/decoder attention test
Note that
(1) attn automatically selects an attention backend
based on platform info & a set of canned
heuristics
(2) attn_backend is thus *not the same backend
instance* used by attn, but rather it is
intended to be a
*different instance* of the *same backend class*;
it is assumed that the user of TestResources
will leverage attn_backend for the purpose of
constructing backend-compatible attention
metadata instances
Attributes:
* scale: 1/sqrt(d) scale factor for attn
* attn_backend: implementatino of abstraction
attention interface using
a particular kernel library
i.e. XFormers
* attn: Attention layer instance
* kv_cache: shared key/value cache for all attention
'''
scale: float
attn_backend: AttentionBackend
attn: Attention
kv_cache: torch.Tensor
def _make_test_resources(test_pt: TestPoint) -> TestResources:
'''
Build key components for performing encoder/decoder attention test.
Note that
(1) The Attention instance constructed here, automatically selects
an attention backend class based on platform info & a set of canned
heuristics, so
(2) The attention backend instance constructed here is thus *not
the same backend instance* used by attn, but rather it is
intended to be a *different instance* of the *same backend class*;
therefore,
(3) This function requires that test_pt.backend_name matches the backend
class that Attention will automatically select when it is constructed.
Arguments:
* test_pt: TestPoint data structure; this function relies on the
following fields: num_heads, head_size, num_blocks,
block_size, backend_name
Returns:
* TestResources data structure.
'''
scale = float(1.0 / (test_pt.head_size**0.5))
attn_backend = make_backend(test_pt.backend_name)
attn = Attention(
test_pt.num_heads,
test_pt.head_size,
scale=scale,
)
if test_pt.num_blocks is None or test_pt.num_heads is None:
# Caller does not require a KV cache
return TestResources(scale, attn_backend, attn, None)
# Construct KV cache
kv_cache = make_kv_cache(test_pt.num_blocks,
test_pt.num_heads,
test_pt.head_size,
test_pt.block_size,
device=CUDA_DEVICE)
return TestResources(scale, attn_backend, attn, kv_cache)
def _encoder_attn_setup(test_pt: TestPoint, test_rsrcs: TestResources) \
-> PhaseTestParameters:
'''
Set up test vectors & data structures for encoder attention test.
A triplet of synthetic query/key/value tensors are constructed.
Given this is an encoder attention test, the key & value
sequences will have the same length as the corresponding queries.
The query/key/value tensors are passed to an ideal reference
self-attention implementation to generate an ideal output tensor.
Encoder inference does not populate the KV cache, therefore
no KV cache memory mapping is constructed
Arguments:
* test_pt: TestPoint data structure; this function relies on the
following fields: batch_size, num_heads, head_size,
block_size, max_q_seq_len
* test_rsrcs: TestResources data structure; this function relies on the
scale field
Returns:
* PhaseTestParameters data structure comprising (1) packed query/key/value
tensors, (2) the ideal output of attention computed using a naive
implementation, and (3) KVCache field set to None
'''
(num_heads, head_size, _, batch_size, _, _, max_q_seq_len, _) = test_pt
scale = test_rsrcs.scale
max_kv_seq_len = max_q_seq_len
# Make test tensors
qkv_in, _, _ = make_qkv(batch_size,
max_q_seq_len,
max_kv_seq_len,
num_heads,
head_size,
attn_type=AttentionType.ENCODER,
device=CUDA_DEVICE)
# Compute correct answer using naive non-causal attention
# implementation
ideal_output = ref_masked_attention(qkv_in.query,
qkv_in.key,
qkv_in.value,
scale=scale,
q_seq_lens=qkv_in.q_seq_lens,
kv_seq_lens=qkv_in.kv_seq_lens)
packed_ideal_output, _ = pack_tensor(ideal_output,
qkv_in.q_seq_lens,
device=CUDA_DEVICE)
packed_qkv = pack_qkv(qkv_in, device=CUDA_DEVICE)
return PhaseTestParameters(
PackedQKVO(
packed_qkv, \
packed_ideal_output),
None # No KV cache
)
def _decoder_attn_setup(
test_pt: TestPoint,
test_rsrcs: TestResources,
block_base_addr: int = 0,
) -> Tuple[QKVInputs, PhaseTestParameters, PhaseTestParameters, int]:
'''
Set up test vectors & data structures for self-attention test.
A triplet of synthetic query/key/value tensors are constructed ("baseline"
query/key/value). Given this is a self-attention test, the key & value
sequences will have the same length as the corresponding queries.
"Prefill" query/key/value tensors are derived by masking out the last value
in each baseline query/key/value. These tensors are used to test prefill &
populate KV cache for a subsequent decode test.
"Decode" query/key/value tensors are derived by extracting *only* the last
value from each baseline query/key/value (i.e. complement of the prefill
tensors.) These tensors are used to test decode, conditional on the kv cache
being populated during the prefill test.
The baseline query/key/value tensors are passed to an ideal reference
self-attention implementation to generate a "Baseline" ideal output tensor.
This tensor is split into the "Prefill" ideal output tensor (all but the
last element of each output sequence) and the "Decode" ideal output tensor
(*only* the last element of each output sequence); the "Prefill" and
"Decode" ideal output tensors can be used to validate the prefill and decode
test results, respectively.
This function also constructs the self-attention KV cache memory mapping
(slot mapping and block table), ensuring that the block table starts at
block_base_addr
Arguments:
* test_pt: TestPoint data structure; this function relies on the
following fields: batch_size, num_heads, head_size,
block_size, max_q_seq_len
* test_rsrcs: TestResources data structure; this function relies on the
scale field
* block_base_addr: decoder self-attention block-table base address
Returns:
* qkv: Unpacked (batch_size x padded_seq_len x num_heads x
head_size) query/key/value tensors
* Prefill-phase decoder self-attention PhaseTestParameters data structure,
including (1) packed (number_of_tokens x num_heads x head_size)
query/key/value tensors along with (2) ideal attention output
computed using a naive implementation, and (3) memory-mapping data
structures appropriate for prefill phase.
* Decode-phase decoder self-attention PhaseTestParameters data structure,
including (1) packed (number_of_tokens x num_heads x head_size)
query/key/value tensors along with (2) ideal attention output
computed using a naive implementation, and (3) memory-mapping data
structures appropriate for decode phase.
* max_block_idx: max physical address in decoder self-attention block-table
(intended to be used as the base address for the encoder/
decoder cross-attention block-table, which is not
constructed in this function)
'''
(num_heads, head_size, _, batch_size, block_size, max_q_seq_len, _,
_) = test_pt
scale = test_rsrcs.scale
max_kv_seq_len = max_q_seq_len
# Build test tensors
qkv, \
prefill_qkv, \
decode_qkv = make_qkv(batch_size,
max_q_seq_len,
max_kv_seq_len,
num_heads,
head_size,
attn_type=AttentionType.DECODER,
device=CUDA_DEVICE)
# Compute correct answer using naive attention implementation
# with causal attention mask
causal_mask = make_causal_mask(max_q_seq_len,
max_kv_seq_len).to(CUDA_DEVICE)
ideal_output = ref_masked_attention(qkv.query,
qkv.key,
qkv.value,
scale=scale,
custom_mask=causal_mask,
q_seq_lens=qkv.q_seq_lens,
kv_seq_lens=qkv.kv_seq_lens)
# Split out the prefill- & decode-phase ideal answers & pack them
prefill_ideal_output = torch.zeros_like(ideal_output)
decode_ideal_output = torch.zeros_like(ideal_output[:, 0:1])
for bdx, prefill_q_seq_len in enumerate(prefill_qkv.q_seq_lens):
prefill_ideal_output[bdx, :prefill_q_seq_len] = ideal_output[
bdx, :prefill_q_seq_len]
decode_ideal_output[bdx, :] = ideal_output[bdx, prefill_q_seq_len:(
prefill_q_seq_len + 1)]
prefill_packed_ideal_output, _ = pack_tensor(prefill_ideal_output,
prefill_qkv.q_seq_lens,
device=CUDA_DEVICE)
decode_packed_ideal_output, _ = pack_tensor(decode_ideal_output,
[1 for _ in range(batch_size)],
device=CUDA_DEVICE)
# Build prefill- & decode-phase data structures
# for decoder self-attention. Block tables and
# slot mapping must be in a format compatible
# with KV caching & attention kernels
#
# Prefill-phase:
#
# * Empty block-tables tensor
# * Slot-mapping with entries for prompt tokens
#
# Decode-phase:
# * Block-tables tensor with minimum number of blocks
# required by total num. tokens in the entirety of all sequences
# (including both prefill & decode)
# * Slot-mapping with entries for tokens that will be decoded in the
# current decode iteration
#
# Note: the format described above is simply mirroring what ModelRunner
# produces
prefill_block_tables = make_empty_block_tables_tensor(device=CUDA_DEVICE)
decode_block_tables, \
slot_mapping_list, \
max_block_idx = make_block_tables_slot_mapping(block_size,
qkv.q_seq_lens,
device=CUDA_DEVICE,
block_base_addr = block_base_addr)
prefill_slot_mapping, \
decode_slot_mapping = split_slot_mapping(slot_mapping_list,
qkv.q_seq_lens,
device=CUDA_DEVICE)
prefill_pckd_qkv = pack_qkv(prefill_qkv, device=CUDA_DEVICE)
decode_pckd_qkv = pack_qkv(decode_qkv, device=CUDA_DEVICE)
return qkv, \
PhaseTestParameters( # Prefill test params
PackedQKVO(
prefill_pckd_qkv, \
prefill_packed_ideal_output), \
KVMemoryMap(
prefill_block_tables, \
prefill_slot_mapping)), \
PhaseTestParameters( # Decode test params
PackedQKVO(
decode_pckd_qkv, \
decode_packed_ideal_output), \
KVMemoryMap(
decode_block_tables, \
decode_slot_mapping)), \
max_block_idx
def _enc_dec_cross_attn_setup_reuses_query(decoder_qkv: QKVInputs,
encoder_test_params:
PhaseTestParameters,
prefill_decoder_phase_test_params:
PhaseTestParameters,
test_pt: TestPoint,
test_rsrcs: TestResources,
block_base_addr: int=0) \
-> Tuple[PhaseTestParameters,
PhaseTestParameters]:
'''
Set up test vectors & data structures for cross-attention test.
A triplet of synthetic cross-attention key/value tensors are constructed
("baseline" key/value). Given this is a cross-attention test, we assume
query tensors were already synthesized for a prior self-attention test and
will be reused for cross-attention. The key & value sequences generated here
may have a different length than the corresponding queries (as is often
the case for cross-attention between decoder and encoder sequences.)
Cross attention key & value tensors do not grow during autoregressive
inference; thus this function obtains a single key/value pair suitable for
both prefill and decode.
The "baseline" query tensor is received as an argument. The "baseline"
query/key/value tensors are passed to an ideal reference cross-attention
implementation to generate a "baseline" ideal output tensor. This tensor is
split into the "Prefill" ideal output tensor (all but the last element of
each output sequence) and the "Decode" ideal output tensor (*only* the last
element of each output sequence); the "Prefill" and "Decode" ideal output
tensors can be used to validate the prefill and decode test results,
respectively.
This function also constructs the cross-attention KV cache memory mapping
(slot mapping and block table), ensuring that the block table starts at
block_base_addr.
Arguments:
* decoder_qkv: pre-existing unpacked (batch_size x padded_seq_len x
num_heads x head_size) decoder self-attention inputs;
this function relies on the query and q_seq_lens
fields
* encoder_test_params: PhaseTestParameters data structure which was
used for encoder inference; KV cache field
is not used by this function
* prefill_decoder_phase_test_params: PhaseTestParameters data structure
used for prefill-phase decoder
self-attention; all fields
including KV cache required
* test_pt: TestPoint data structure; this function relies on the
following fields: batch_size, num_heads, head_size,
block_size, max_q_seq_len
* test_rsrcs: TestResources data structure; this function relies on the
scale field
* block_base_addr: decoder self-attention block-table base address
Returns:
* Prefill-phase encoder/decoder cross-attention PhaseTestParameters data
structure, including (1) packed
(number_of_tokens x num_heads x head_size) query/key/value tensors
along with (2) ideal attention output computed using a
naive implementation, and (3) memory-mapping data structures appropriate
for prefill phase.
* Decode-phase encoder/decoder cross-attention PhaseTestParameters data
structure, including (1) packed
(number_of_tokens x num_heads x head_size) query/key/value tensors
along with (2) ideal attention output computed using a
naive implementation, and (3) memory-mapping data structures appropriate
for decode phase.
'''
assert encoder_test_params.packed_qkvo.packed_qkv is not None
assert prefill_decoder_phase_test_params.packed_qkvo.packed_qkv is not None
(num_heads, head_size, _, batch_size, block_size, max_decoder_seq_len,
max_encoder_seq_len, _) = test_pt
scale = test_rsrcs.scale
decoder_query = decoder_qkv.query
decoder_seq_lens = decoder_qkv.q_seq_lens
encoder_seq_lens = encoder_test_params.packed_qkvo.packed_qkv.q_seq_lens
prefill_q_seq_lens = \
prefill_decoder_phase_test_params.packed_qkvo.packed_qkv.q_seq_lens
assert prefill_q_seq_lens is not None
cross_kv, \
_, \
_ = make_qkv(batch_size,
max_decoder_seq_len,
max_encoder_seq_len,
num_heads,
head_size,
force_kv_seq_lens=encoder_seq_lens,
attn_type=AttentionType.ENCODER_DECODER,
device=CUDA_DEVICE)
ideal_output = ref_masked_attention(decoder_query,
cross_kv.key,
cross_kv.value,
scale=scale,
q_seq_lens=decoder_seq_lens,
kv_seq_lens=cross_kv.kv_seq_lens)
prefill_ideal_output = torch.zeros_like(ideal_output)
decode_ideal_output = torch.zeros_like(ideal_output[:, 0:1])
for bdx, prefill_q_seq_len in enumerate(prefill_q_seq_lens):
prefill_ideal_output[bdx, :prefill_q_seq_len] = ideal_output[
bdx, :prefill_q_seq_len]
decode_ideal_output[bdx, :] = ideal_output[bdx, prefill_q_seq_len:(
prefill_q_seq_len + 1)]
prefill_packed_ideal_output, _ = pack_tensor(prefill_ideal_output,
prefill_q_seq_lens,
device=CUDA_DEVICE)
decode_packed_ideal_output, _ = pack_tensor(decode_ideal_output,
[1 for _ in range(batch_size)],
device=CUDA_DEVICE)
# Build prefill- & decode-phase data structures
# for encoder/decoder cross-attention. Block tables and
# slot mapping must be in a format compatible
# with KV caching & attention kernels
#
# Whereas decoder self-attention extracts relationships between
# equal-length Q/K/V sequences, which mutually grow in length
# with each decoded token, cross-attention relates the Q sequence
# - which grows with each new decoded token - to fixed-length
# K and V sequences derived from the encoder hidden states.
#
# Prefill-phase:
#
# * Empty block-tables tensor
# * Slot-mapping with as many entries as there are tokens in the encoder
# prompt.
#
# Decode-phase:
# * Block-tables tensor with minimum number of blocks to
# accommodate K & V tensors which are equal in lnegth
# to the encoder prompt length
# * Empty slot-mapping tensor (since K & V are fixed in size,
# new decoded tokens are not KV-cached and require no slot-
# mapping)
#
# Note: the format above is simply an extension of what ModelRunner
# produces for decoder-only models
prefill_block_tables = make_empty_block_tables_tensor(device=CUDA_DEVICE)
decode_slot_mapping = make_empty_slot_mapping_tensor(device=CUDA_DEVICE)
decode_block_tables, \
prefill_slot_mapping_list, \
_ = make_block_tables_slot_mapping(
block_size,
cross_kv.kv_seq_lens,
block_base_addr=block_base_addr,
device=CUDA_DEVICE)
prefill_slot_mapping = maybe_make_long_tensor(prefill_slot_mapping_list,
device=CUDA_DEVICE)
# Packed key/value (query is already provided)
packed_cross_kv = pack_qkv(cross_kv, device=CUDA_DEVICE)
return PhaseTestParameters( # Prefill-phase test params
PackedQKVO(
packed_cross_kv, \
prefill_packed_ideal_output), \
KVMemoryMap(
prefill_block_tables, \
prefill_slot_mapping)), \
PhaseTestParameters( # Decode-phase test params
PackedQKVO(
None,
decode_packed_ideal_output), \
KVMemoryMap(
decode_block_tables, \
decode_slot_mapping))
def _run_encoder_attention_test(attn: Attention,
encoder_test_params: PhaseTestParameters,
attn_metadata: AttentionMetadata) \
-> torch.Tensor:
'''
Run encoder attention.
attn.forward() is passed attn_type=AttentionType.ENCODER in order
to configure the kernel invocation for encoder attention
Requires attn_metadata.num_decode_tokens == 0
(There is no encoder execution in the decode-phase)
Arguments:
* attn: Attention wrapper instance
* encoder_test_params: encoder PhaseTestParameters data structure;
this function relies on the packed
(number_of_tokens x num_heads x head_size)
query/key/value fields
* attn_metadata: attention metadata for encoder/decoder-self attention
Returns:
* Attention.forward() applied to packed {query,key,value} and
& attn_metadata
'''
assert attn_metadata.num_decode_tokens == 0
attn_type = AttentionType.ENCODER
packed_qkv = encoder_test_params.packed_qkvo.packed_qkv
assert packed_qkv is not None
return attn.forward(packed_qkv.query,
packed_qkv.key,
packed_qkv.value,
None,
attn_metadata,
attn_type=attn_type)
def _run_decoder_self_attention_test(test_rsrcs: TestResources,
decoder_test_params: PhaseTestParameters,
attn_metadata: AttentionMetadata) \
-> torch.Tensor:
'''
Run decoder self-attention test.
attn.forward() is passed attn_type=AttentionType.DECODER
in order to configure the kernel invocation for decoder self-attention.
Arguments:
* test_rsrcs: TestResources instance; this function relies on the kv_cache
and attn (Attention wrapper instance) fields
* decoder_test_params: decoder PhaseTestParameters data structure;
this function relies on the packed
(number_of_tokens x num_heads x head_size)
query/key/value fields
* attn_metadata: attention metadata for decoder-self attention
(contains KV cache memory-mapping)
Returns:
* Attention.forward() applied to packed_{query,key,value}, kv_cache
& attn_metadata
'''
attn_type = AttentionType.DECODER
attn = test_rsrcs.attn
kv_cache = test_rsrcs.kv_cache
packed_qkv = decoder_test_params.packed_qkvo.packed_qkv
assert packed_qkv is not None
return attn.forward(packed_qkv.query,
packed_qkv.key,
packed_qkv.value,
kv_cache,
attn_metadata,
attn_type=attn_type)
def _run_encoder_decoder_cross_attention_test(
test_rsrcs: TestResources, decoder_test_params: PhaseTestParameters,
cross_test_params: Optional[PhaseTestParameters],
attn_metadata: AttentionMetadata) -> torch.Tensor:
'''
Run encoder/decoder cross-attention test.
Via PhaseTestParameters data structures, consumes the same query utilized
for decoder self-attention, plus a key/value specific to cross-attention.
if cross_test_params is None or cross_test_params.packed_qkvo.packed_qkv
is None, this reflects that in decode-phase cross attention there
is no growth in the key and value tensors.
attn.forward() is passed attn_type=AttentionType.ENCODER_DECODER
in order to configure the kernel invocation for encoder/decoder cross-
attention.
Arguments:
* test_rsrcs: TestResources instance; this function relies on the kv_cache
and attn (Attention wrapper instance) fields
* decoder_test_params: decoder PhaseTestParameters data structure;
this function relies on the packed
(number_of_tokens x num_heads x head_size)
query field
* cross_test_params: encoder/decoder PhaseTestParameters data structure;
this function relies on the packed
(number_of_tokens x num_heads x head_size)
key/value fields
* attn_metadata: attention metadata for encoder/decoder-self attention
Returns:
* Attention.forward() applied to packed_{query,key,value}, kv_cache
& attn_metadata
'''
assert decoder_test_params.packed_qkvo.packed_qkv is not None
attn_type = AttentionType.ENCODER_DECODER
attn = test_rsrcs.attn
kv_cache = test_rsrcs.kv_cache
if cross_test_params is None:
key = None
value = None
else:
cross_pckd_qkv = cross_test_params.packed_qkvo.packed_qkv
key = None if cross_pckd_qkv is None else \
cross_pckd_qkv.key
value = None if cross_pckd_qkv is None else \
cross_pckd_qkv.value
return attn.forward(decoder_test_params.packed_qkvo.packed_qkv.query,
key,
value,
kv_cache,
attn_metadata,
attn_type=attn_type)
@pytest.mark.skipif(is_hip(), reason=STR_NOT_IMPL_ENC_DEC_ROCM_HIP)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("backend_name", BACKEND_NAMES)
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("max_dec_seq_len", MAX_DEC_SEQ_LENS)
@pytest.mark.parametrize("max_enc_seq_len", MAX_ENC_SEQ_LENS)
def test_encoder_only(num_heads: int, head_size: int, backend_name: str,
batch_size: int, block_size: int, max_dec_seq_len: int,
max_enc_seq_len: int, monkeypatch):
# Force Attention wrapper backend
override_backend_env_variable(monkeypatch, backend_name)
# Note: KV cache size of 4096 is arbitrary & chosen intentionally
# to be more than necessary, since exceeding the kv cache size
# is not part of this test
test_pt = TestPoint(num_heads, head_size, backend_name, batch_size,
block_size, max_dec_seq_len, max_enc_seq_len, 4096)
# Attention scale factor, attention backend instance, attention wrapper
# instance, KV cache init
test_rsrcs = _make_test_resources(test_pt)
# Construct encoder attention test params (only used
# during prefill)
enc_test_params = _encoder_attn_setup(test_pt, test_rsrcs)
# Shared prefill metadata structure
prephase_attn_metadata: AttentionMetadata = make_test_metadata(
test_rsrcs.attn_backend,
True,
None,
decoder_test_params=None,
encoder_test_params=enc_test_params,
cross_test_params=None,
device=CUDA_DEVICE)
# PREFILL: encoder attention
enc_pckd_act_out: torch.Tensor = \
_run_encoder_attention_test(
test_rsrcs.attn,
enc_test_params,
prephase_attn_metadata)
# - Is encoder attention result correct?
assert_actual_matches_ideal(enc_test_params, enc_pckd_act_out)
@pytest.mark.skipif(is_hip(), reason=STR_NOT_IMPL_ENC_DEC_ROCM_HIP)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("backend_name", BACKEND_NAMES)
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("max_dec_seq_len", MAX_DEC_SEQ_LENS)
@pytest.mark.parametrize("max_enc_seq_len", MAX_ENC_SEQ_LENS)
def test_e2e_enc_dec_attn(num_heads: int, head_size: int, backend_name: str,
batch_size: int, block_size: int,
max_dec_seq_len: int, max_enc_seq_len: int,
monkeypatch) -> None:
'''
End-to-end encoder/decoder test:
* Construct fake test vectors for (1) encoder attention,
(2) decoder self-attention, and (3) encoder/decoder cross-attention
* Construct (1) attention metadata structure with self- and cross-attention
attributes for prefill-phase, and (2) an analogous attention metadata
structure but for decode-phase
* Test attention steps in the following order
* Encoder attention
* Prefill self-attention
* Prefill cross-attention
* Decode self-attention
* Decode cross-attention
* Besides being reflective of realistic use-cases, this order would
exacerbate any accidental overlap in the self-/cross-attention
block tables, which one hopes to avoid
* Validate output correctness against ideal reference attention
implementation
Block tables are constructed such that cross-attention KV cache is in a
higher, non-intersecting address-space than self-attention KV cache.
Self- and cross-attention share the same query tensor but not the K/V
tensors. Self-attention K/Vs must have the same seq len as Q while
cross-attention K/Vs are allowed to differ in seq len, as is often the case
for cross-attention.
This test utilizes PyTest monkey patching to force the attention backend
via an environment variable.
Note on ROCm/HIP: currently encoder/decoder models are not supported on
AMD GPUs, therefore this test simply is skipped if is_hip().
Note on metadata: there is a single attention metadata structure shared by
all prefill-phase attention operations (encoder, decoder, enc/dec cross),
and a single one shared by all decode-phase attention operations
(decoder & enc/dec cross.) This is intended to reflect the behavior
of ModelRunner, which constructs a single attention metadata structure for
each prefill or decode run. A realistic scenario would rely on the
attention backend to utilize the appropriate attention metadata fields
according to the value of attn_metadata.attention_type. Thus, this test is
organized so as to confirm that the backend-under-test can handle a
shared prefill attention metadata structure & a shared decode attention
metadata structure.
'''
# Force Attention wrapper backend
override_backend_env_variable(monkeypatch, backend_name)
# Note: KV cache size of 4096 is arbitrary & chosen intentionally
# to be more than necessary, since exceeding the kv cache size
# is not part of this test
test_pt = TestPoint(num_heads, head_size, backend_name, batch_size,
block_size, max_dec_seq_len, max_enc_seq_len, 4096)
# Attention scale factor, attention backend instance, attention wrapper
# instance, KV cache init
test_rsrcs = _make_test_resources(test_pt)
# Construct encoder attention test params (only used
# during prefill)
enc_test_params = _encoder_attn_setup(test_pt, test_rsrcs)
# Construct Decoder self-attention prefill-phase & decode-phase
# test params, including query/key/value tensors, decoder self-attention
# memory-mapping. cross_block_base_addr is the uppermost address in the
# decoder self-attention block-table, i.e. a base address which the
# encoder/decoder cross-attention block-table may build downward toward.
dec_qkv, \
prephase_dec_test_params, \
decphase_dec_test_params, \
cross_block_base_addr = _decoder_attn_setup(test_pt,test_rsrcs)
# Construct encoder/decoder cross-attention prefill-phase & decode-phase
# test params, including key/value tensors, cross-attention memory-mapping
prephase_cross_test_params, \
decphase_cross_test_params, \
= _enc_dec_cross_attn_setup_reuses_query(dec_qkv,
enc_test_params,
prephase_dec_test_params,
test_pt,
test_rsrcs,
block_base_addr = \
cross_block_base_addr)
# Shared prefill metadata structure
assert prephase_dec_test_params.packed_qkvo.packed_qkv is not None
prephase_attn_metadata: AttentionMetadata = make_test_metadata(
test_rsrcs.attn_backend,
True,
prephase_dec_test_params.packed_qkvo.packed_qkv.q_seq_lens,
decoder_test_params=prephase_dec_test_params,
encoder_test_params=enc_test_params,
cross_test_params=prephase_cross_test_params,
device=CUDA_DEVICE)
# PREFILL: encoder attention
enc_pckd_act_out: torch.Tensor = \
_run_encoder_attention_test(
test_rsrcs.attn,
enc_test_params,
prephase_attn_metadata)
# - Is encoder attention result correct?
assert_actual_matches_ideal(enc_test_params, enc_pckd_act_out)
# PREFILL: decoder self-attention test
prephase_dec_pckd_act_out: torch.Tensor = \
_run_decoder_self_attention_test(
test_rsrcs,
prephase_dec_test_params,
prephase_attn_metadata)
# - Is prefill decoder self-attention correct?
assert_actual_matches_ideal(prephase_dec_test_params,
prephase_dec_pckd_act_out)
# PREFILL: encoder/decoder cross-attention test
prephase_cross_pckd_act_out: torch.Tensor = \
_run_encoder_decoder_cross_attention_test(
test_rsrcs,
prephase_dec_test_params,
prephase_cross_test_params,
prephase_attn_metadata)
# - Is prefill encoder/decoder cross-attention correct?
assert_actual_matches_ideal(prephase_cross_test_params,
prephase_cross_pckd_act_out)
# DECODE: build decode-phase attention metadata
decphase_attn_metadata: AttentionMetadata = make_test_metadata(
test_rsrcs.attn_backend,
False,
dec_qkv.q_seq_lens,
decoder_test_params=decphase_dec_test_params,
encoder_test_params=enc_test_params,
cross_test_params=decphase_cross_test_params,
device=CUDA_DEVICE)
# DECODE: decoder self-attention test
decphase_dec_pckd_act_out: torch.Tensor = \
_run_decoder_self_attention_test(
test_rsrcs,
decphase_dec_test_params,
decphase_attn_metadata)
# - Is decode-phase decoder self-attention correct?
assert_actual_matches_ideal(decphase_dec_test_params,
decphase_dec_pckd_act_out)
# DECODE: encoder/decoder cross-attention test
decphase_cross_pckd_act_out: torch.Tensor = \
_run_encoder_decoder_cross_attention_test(
test_rsrcs,
decphase_dec_test_params,
None,
decphase_attn_metadata)
# - Is decode-phase encoder/decoder cross-attention correct?
assert_actual_matches_ideal(decphase_cross_test_params,
decphase_cross_pckd_act_out)