-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.tape
executable file
·374 lines (324 loc) · 11.8 KB
/
run.tape
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/env ducttape
global {
JSALT_NPLM_data="/home/lanes/JSALT_NPLM_data"
python37="/usr/bin/python3.7"
}
task fst
:: url="[email protected]:SaintLawrenceIslandYupik/finite_state_morphology.git"
> analyzer="fst/lexicon/lexicon.py"
> extract_splits="fst/lexicon/extract-split-words.py"
> extract_analyses="fst/lexicon/extract-analyzed-words.py"
> lexc="fst/ess.lexc"
> s2u="fst/ess.fomabin"
> i2u="fst/ess.underlying.fomabin"
{
git clone --depth 1 --single-branch --branch jsalt2019 ${url} fst
cd fst
make ess.fomabin ess.underlying.fomabin
}
task venv
< python37="/usr/bin/python3.7"
:: url="[email protected]:neural-polysynthetic-language-modelling/iiksiin.git"
> activate="bin/activate"
{
git clone --depth 1 --single-branch --branch master ${url} code
mv code/requirements.txt .
${python37} -m venv .
source ${activate}
pip install -r requirements.txt
}
task iiksiin
< python37="/usr/bin/python3.7"
< activate=@venv
:: url="[email protected]:neural-polysynthetic-language-modelling/iiksiin.git"
> create_alphabet="code/alphabet.py"
> autoencoder="code/autoencoder.py"
> create_tensors="code/corpus2tensors.py"
> validate_tensors="code/validate_tensors.py"
> char2morph="code/char2morph.py"
{
git clone --depth 1 --single-branch --branch master ${url} code
}
task europarl_tools
:: url="[email protected]:dowobeha/europarl_tools.git"
> tokenizer="tools/tools/tokenizer.perl"
> split_sentences="tools/tools/split-sentences.perl"
{
git clone --depth 1 --single-branch --branch master ${url} tools
}
task data
:: data=$JSALT_NPLM_data
:: lang=(Lang: ess)
:: condition=(Condition: all nt)
> train
> dev
> test
{
if [[ "${lang}" == "ess" ]]; then
find ${data}/Inuit-Yupik/ess/monolingual_corpus/new_testament/new.testament.ess/ -maxdepth 1 -type f | sort | grep 'B03_.*_Luke' | xargs cat | sed 's,^[[:digit:]]\+[[:space:]]\+,,' | grep -v '^ *$' > ${dev}
find ${data}/Inuit-Yupik/ess/monolingual_corpus/new_testament/new.testament.ess/ -maxdepth 1 -type f | sort | grep 'B04_.*_John' | xargs cat | sed 's,^[[:digit:]]\+[[:space:]]\+,,' | grep -v '^ *$' > ${test}
if [[ "${condition}" == "nt" || "${condition}" == "all" ]]; then
find ${data}/Inuit-Yupik/ess/monolingual_corpus/new_testament/new.testament.ess/ -maxdepth 1 -type f | sort | grep -v 'B03_.*_Luke' | grep -v 'B04_.*_John' | xargs cat | sed 's,^[[:digit:]]\+[[:space:]]\+,,' | grep -v '^ *$' > ${train}
fi
if [[ "${condition}" == "all" ]]; then
for dir in elementary_primers/level1.kallagneghet-drumbeats \
elementary_primers/level2.akiingqwaghneghet-echoes \
elementary_primers/level3.suluwet-whisperings nagai \
sivuqam_nangaghnegha/sivuqam_volume1 \
sivuqam_nangaghnegha/sivuqam_volume2 \
sivuqam_nangaghnegha/sivuqam_volume3 \
ungipaghaghlanga; do
cat ${data}/Inuit-Yupik/ess/monolingual_corpus/${dir}/*.gold.ess/*.ess.txt >> ${train}
done
fi
fi
}
task split_sentences
< script=$split_sentences@europarl_tools
< raw_train=$train@data
< raw_dev=$dev@data
< raw_test=$test@data
:: lang=(Lang: ess)
> train
> dev
> test
{
${script} -l ${lang} < ${raw_train} | grep -v '<P>' > ${train}
${script} -l ${lang} < ${raw_dev} | grep -v '<P>' > ${dev}
${script} -l ${lang} < ${raw_test} | grep -v '<P>' > ${test}
}
task tokenize
< script=$tokenizer@europarl_tools
< train_in=$train@split_sentences
< dev_in=$dev@split_sentences
< test_in=$test@split_sentences
:: lang=(Lang: ess)
> train
> dev
> test
{
${script} -l ${lang} < ${train_in} > ${train}
${script} -l ${lang} < ${dev_in} > ${dev}
${script} -l ${lang} < ${test_in} > ${test}
}
task analyze
< python37=@
< analyzer=@fst
< in=(Split: train=@tokenize dev=@tokenize test=@tokenize)
< s2u=@fst
< i2u=@fst
< lexc=@fst
> out
{
${python37} ${analyzer} --mode t2a \
--corpus ${in} \
--lexc ${lexc} \
--s2u ${s2u} \
--i2u ${i2u} \
--output ${out}
}
task split_words
< python37=@
< extract_splits=@fst
< in=$out@analyze
> out
{
${python37} ${extract_splits} < ${in} > ${out}
}
#task data_repo
# < JSALT_NLPM_data=@
# > data_dir
#{
# git clone ${url} ${data_dir}
# cd ${data_dir}
# git annex enableremote kulusiq
# git annex sync --content
# ln -s ${JSALT_NLPM_data} ${data_dir}
#}
#task data
# < data_dir=@data_repo
# :: subdir=(Lang: grn=(Condition: mt="Other/grn/grn-spa/preprocess/output/all/fst"
# all="Other/grn/grn-spa/preprocess/monolingual/all/fst"
# nt="Other/grn/grn-spa/preprocess/monolingual/NT/fst")
# ess=(Condition: mt="Inuit-Yupik/ess/parallel_corpus/new_testament/preprocess/output/all/fst"
# all="Inuit-Yupik/ess/parallel_corpus/new_testament/preprocess/monolingual/all/fst"
# nt="Inuit-Yupik/ess/parallel_corpus/new_testament/preprocess/monolingual/NT/fst"))
# :: suffix=(Lang: grn=(Condition: mt="tc.grn"
# all="tok.grn"
# nt="tok.grn")
# ess=(Condition: mt="tc.ess"
# all="tok.ess"
# nt="tok.ess"))
# > train
# > dev
# > test
# > corpus_dir="."
#{
# ln --verbose -s ${data_dir}/${subdir}/train.${suffix} ${train}
#
# if [[ -f "${data_dir}/${subdir}/dev.${suffix}" ]]; then
# ln --verbose -s ${data_dir}/${subdir}/dev.${suffix} ${dev}
# elif [[ -f "${data_dir}/${subdir}/valid.${suffix}" ]]; then
# ln --verbose -s ${data_dir}/${subdir}/valid.${suffix} ${dev}
# else
# echo "Unable to find ${data_dir}/${subdir}/dev.${suffix} or ${data_dir}/${subdir}/valid.${suffix}"
# fi
#
# ln --verbose -s ${data_dir}/${subdir}/test.${suffix} ${test}
#}
task alphabet
< activate=@venv
< create_alphabet=@iiksiin
< in=$out@split_words[Split:train]
:: lang=(Lang: ess)
:: morph_delimiter=(Lang: ess="^")
:: blacklist_char=(Lang: ess="*")
> out
> log
{
source ${activate}
python3 ${create_alphabet} --description "${lang}" \
--morpheme_delimiter "${morph_delimiter}" \
--end_of_morpheme_symbol '\u0000' \
--input_file "${in}" \
--blacklist_char "${blacklist_char}" \
--output_file "${out}" \
--log "${log}"
}
plan {
# reach fst
# reach iiksiin
# reach tokenize via (Lang: ess) * (Condition: all nt)
reach split_words via (Lang: ess) * (Condition: all) * (Split: train dev)
reach alphabet via (Lang: ess) * (Condition: all)
reach create_tensors via (Lang: ess) * (Condition: all) * (Split: train)
# reach validate_tensors via (Lang: ess) * (Condition: all) * (Split: train)
# reach autoencode via (Lang: ess) * (Condition: all) * (Split: train) * (VectorSize: 64) * (AutoencoderLayers: 7) * (AutoencoderEpochs: 1000)
# reach morpheme_vectors via (Lang: ess) * (Condition: all) * (Split: train) * (VectorSize: 64) * (AutoencoderLayers: 7) * (AutoencoderEpochs: 1000)
# reach validate_vectors via (Lang: ess) * (Condition: all) * (Split: train) * (VectorSize: 128) * (AutoencoderLayers: 7) * (AutoencoderEpochs: 10000)
reach validate_vectors via (Lang: ess) * (Condition: all) * (Split: train) * (VectorSize: 512) * (AutoencoderLayers: 3) * (AutoencoderEpochs: 1000)
}
task create_tensors
< activate=@venv
< create_tensors=@iiksiin
< in=$out@split_words
< alphabet=$out@alphabet
:: max_characters=20
:: morph_delimiter=(Lang: ess="^")
:: blacklist_char=(Lang: ess="*")
> out="train.tensors"
{
source ${activate}
python3 ${create_tensors} --morpheme_delimiter "${morph_delimiter}" \
--max_characters "${max_characters}" \
--blacklist_char "${blacklist_char}" \
--alphabet "${alphabet}" \
--input_file "${in}" \
--output_file "${out}"
}
task validate_tensors
< activate=@venv
< validate_tensors=@iiksiin
< in=$out@create_tensors
< alphabet=$out@alphabet
:: max_characters=20
> out="results.tsv"
{
source ${activate}
python3 ${validate_tensors} --max_characters "${max_characters}" \
--alphabet "${alphabet}" \
--input_file "${in}" \
--output_file "${out}"
}
task autoencode
< autoencoder=@iiksiin
< activate=@venv
< in=$out@create_tensors
< alphabet=$out@alphabet
:: epochs=(AutoencoderEpochs: 50 100 150 200 250 300 350 400 450 500 600 700 800 900 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000)
:: batch_size=100
:: num_hidden_layers=(AutoencoderLayers: 1 2 3 4 5 6 7 8 9 10)
:: hidden_layer_size=(VectorSize: 64 128 256 512)
:: learning_rate="0.01"
:: cuda_device="3"
> out="train.autoencoder.model"
{
source ${activate}
python3 ${autoencoder} --mode train \
--tensor_file "${in}" \
--alphabet "${alphabet}" \
--epochs "${epochs}" \
--batch_size "${batch_size}" \
--hidden_layer_size "${hidden_layer_size}" \
--hidden_layers "${num_hidden_layers}" \
--learning_rate "${learning_rate}" \
--cuda_device "${cuda_device}" \
--output "${out}"
}
task morpheme_vectors
< autoencoder=@iiksiin
< activate=@venv
< in=$out@create_tensors
< alphabet=$out@alphabet
< model=$out@autoencode
:: cuda_device="3"
> out="train.vectors"
{
source ${activate}
python3 ${autoencoder} --mode t2v \
--tensor_file "${in}" \
--alphabet "${alphabet}" \
--model_file "${model}" \
--cuda_device "${cuda_device}" \
--output "${out}"
}
task validate_vectors
< autoencoder=@iiksiin
< activate=@venv
< alphabet=$out@alphabet
< tensors=$out@create_tensors
< vectors=$out@morpheme_vectors
< model=$out@autoencode
:: batch_size="100"
:: cuda_device="3"
> out
{
source ${activate}
python3 ${autoencoder} --mode v2s \
--alphabet "${alphabet}" \
--tensor_file "${tensors}" \
--vector_file "${vectors}" \
--model_file "${model}" \
--cuda_device "${cuda_device}" \
--output "${out}"
}
task char2morph
< activate=@venv
< char2morph=@iiksiin
< vectors=$out@morpheme_vectors
< train=@data
< dev=@data
< test=@data
{
source ${activate}
python3 ${char2morph}
--train_file ${train} \
--dev_file ${dev} \
--test_file ${test} \
--vector_file ${vectors} \
--alphabet grn.alphabet \
--lr 0.0001 \
--autoencoder_model grn.trained_model \
--epochs 300 \
--char2morph_model grn.char2morph_debug.pt
}
#plan {
# reach iiksiin
# reach data_repo
# reach data via (Lang: grn) * (Condition: *)
# reach create_tensors via (Lang: grn) * (Condition: *)
# reach autoencode, morpheme_vectors via (Lang: grn) * (Condition: *) * (VectorSize: 512)
# reach char2morph
# reach morpheme_vectors
# reach create_tensors
#}