diff --git a/2022-round-1/unna97/nx_tutorial_script.py b/2022-round-1/unna97/nx_tutorial_script.py new file mode 100644 index 0000000..f12e027 --- /dev/null +++ b/2022-round-1/unna97/nx_tutorial_script.py @@ -0,0 +1,126 @@ +import networkx as nx +import matplotlib.pyplot as plt +import matplotlib.animation as animation +import random + +print(nx.__version__) + + +def highlight_path_given(path_highlight, position, color="yellow", alpha=0.8, width=5): + + nx.draw_networkx_edges( + example_directed_graph, + edgelist=path_highlight, + pos=position, + edge_color=color, + alpha=alpha, + ax=ax, + width=width, + ) + + nx.draw(example_directed_graph, pos=position, ax=ax, with_labels=True) + + +def update_fig(i): + ax.clear() + print(i) + highlight_path_given(path_edges[i], position) + fig.suptitle(f"Path {i + 1} of {len(path_edges)}") + + +def create_animation_highlight_paths(path_edges): + + ani = animation.FuncAnimation( + fig, + update_fig, + frames=len(path_edges), + ) + + gif_file_path = r"shortest_paths.gif" + writergif = animation.PillowWriter(fps=1) + ani.save(gif_file_path, writer=writergif) + return ani + + +if __name__ == "__main__": + ### Intializing the graph: + example_directed_graph = nx.DiGraph() + + ### Adding nodes from list: + random_nodes = ["node_string", 10, 10, 12, (1, 22), "red", "green", 36, "blue"] + example_directed_graph.add_nodes_from(random_nodes) + + ### Only unique node_values will be added + print("nodes added:", example_directed_graph.nodes()) + + ### Adding random edges between nodes: + for i in range(10): + example_directed_graph.add_edge( + random.choice(random_nodes), random.choice(random_nodes) + ) + + ### Edges will be also added only once, above will create at max 10: + print("edges added:", example_directed_graph.edges()) + print("number of edges added:", example_directed_graph.number_of_edges()) + + ### Finding shortest paths between nodes in an unweighted directed graph: + ###In case of multiple shortest paths between two pair of nodes, only one is returned in methods belows: + + ### Method 1: + print( + "Method 1 shortest path between nodes:", + nx.shortest_path(example_directed_graph), + ) + + ### Method 2: Get the generator of all pairs shortest paths: + print( + "Method 2 shortest path between nodes:", + dict(nx.all_pairs_shortest_path(example_directed_graph)), + ) + + ### Method 3: Get the generator of single source shortest paths (for all nodes): + for node in example_directed_graph.nodes(): + print( + f"Method 3 shortest path between {node} and other reachable nodes", + dict(nx.single_source_shortest_path(example_directed_graph, node)), + ) + + ### Plot the graph: + nx.draw( + example_directed_graph, with_labels=True, node_size=100, alpha=1, linewidths=10 + ) + plt.show() + + ### Create a gif, highlighting the shortest paths: + position = nx.spring_layout(example_directed_graph) + fig, ax = plt.subplots(figsize=(10, 10)) + plt.close() + paths = nx.shortest_path(example_directed_graph) + path_edges = [] + + for source_node in paths: + for target_node in paths[source_node]: + path = paths[source_node][target_node] + path_edge = list(zip(path, path[1:])) + path_edges.append(path_edge) + print(path_edges) + + create_animation_highlight_paths(path_edges) + + ### All shortest paths between pairs of node: + print("All shortest paths between all pairs of nodes:\n") + + for source_node in paths: + for target_node in paths[source_node]: + print( + "source_node:", + source_node, + "target_node:", + target_node, + "\npaths:", + list( + nx.all_shortest_paths( + example_directed_graph, source=source_node, target=target_node + ) + ), + )