forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dual_edge_norms.h
129 lines (108 loc) · 5.08 KB
/
dual_edge_norms.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_GLOP_DUAL_EDGE_NORMS_H_
#define OR_TOOLS_GLOP_DUAL_EDGE_NORMS_H_
#include "ortools/glop/basis_representation.h"
#include "ortools/glop/parameters.pb.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/permutation.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/util/stats.h"
namespace operations_research {
namespace glop {
// This class maintains the dual edge squared norms to be used in the
// dual steepest edge pricing. The dual edge u_i associated with a basic
// variable of row index i is such that u_i.B = e_i where e_i is the unit row
// vector with a 1.0 at position i and B the current basis. We call such vector
// u_i an unit row left inverse, and it can be computed by
//
// basis_factorization.LeftSolveForUnitRow(i, &u_i);
//
// Instead of computing each ||u_i|| at every iteration, it is more efficient to
// update them incrementally for each basis pivot applied to B. See the code or
// the papers below for details:
//
// J.J. Forrest, D. Goldfarb, "Steepest-edge simplex algorithms for linear
// programming", Mathematical Programming 57 (1992) 341-374, North-Holland.
// http://www.springerlink.com/content/q645w3t2q229m248/
//
// Achim Koberstein, "The dual simplex method, techniques for a fast and stable
// implementation", PhD, Paderborn, Univ., 2005.
// http://digital.ub.uni-paderborn.de/hs/download/pdf/3885?originalFilename=true
class DualEdgeNorms {
public:
// Takes references to the linear program data we need.
explicit DualEdgeNorms(const BasisFactorization& basis_factorization);
// Clears, i.e. reset the object to its initial value. This will trigger a
// full norm recomputation on the next GetEdgeSquaredNorms().
void Clear();
// If this is true, then the caller must re-factorize the basis before the
// next call to GetEdgeSquaredNorms(). This is because the latter will
// recompute the norms from scratch and therefore needs a hightened precision
// and speed.
bool NeedsBasisRefactorization();
// Returns the dual edge squared norms. This is only valid if the caller
// properly called UpdateBeforeBasisPivot() before each basis pivot, or just
// called Clear().
const DenseColumn& GetEdgeSquaredNorms();
// Updates the norms if the columns of the basis where permuted.
void UpdateDataOnBasisPermutation(const ColumnPermutation& col_perm);
// Updates the norms just before a basis pivot is applied:
// - The column at leaving_row will leave the basis and the column at
// entering_col will enter it.
// - direction is the right inverse of the entering column.
// - unit_row_left_inverse is the left inverse of the unit row with index
// given by the leaving_row. This is also the leaving dual edge.
void UpdateBeforeBasisPivot(ColIndex entering_col, RowIndex leaving_row,
const ScatteredColumn& direction,
const ScatteredRow& unit_row_left_inverse);
// Sets the algorithm parameters.
void SetParameters(const GlopParameters& parameters) {
parameters_ = parameters;
}
// Stats related functions.
std::string StatString() const { return stats_.StatString(); }
private:
// Recomputes the dual edge squared norms from scratch with maximum precision.
// The matrix must have been refactorized before because we will do a lot of
// inversions. See NeedsBasisRefactorization(). This is checked in debug mode.
void ComputeEdgeSquaredNorms();
// Computes the vector tau needed to update the norms using a right solve:
// B.tau = (u_i)^T, u_i.B = e_i for i = leaving_row.
const DenseColumn& ComputeTau(const ScatteredColumn& unit_row_left_inverse);
// Statistics.
struct Stats : public StatsGroup {
Stats()
: StatsGroup("DualEdgeNorms"),
tau_density("tau_density", this),
edge_norms_accuracy("edge_norms_accuracy", this),
lower_bounded_norms("lower_bounded_norms", this) {}
RatioDistribution tau_density;
DoubleDistribution edge_norms_accuracy;
IntegerDistribution lower_bounded_norms;
};
Stats stats_;
// Parameters.
GlopParameters parameters_;
// Problem data that should be updated from outside.
const BasisFactorization& basis_factorization_;
// The dual edge norms.
DenseColumn edge_squared_norms_;
// Whether we should recompute the norm from scratch.
bool recompute_edge_squared_norms_;
DISALLOW_COPY_AND_ASSIGN(DualEdgeNorms);
};
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_GLOP_DUAL_EDGE_NORMS_H_