forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knapsack_solver_for_cuts.h
386 lines (329 loc) · 16.4 KB
/
knapsack_solver_for_cuts.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This library solves 0-1 one-dimensional knapsack problems with fractional
// profits and weights using the branch and bound algorithm. Note that
// algorithms/knapsack_solver uses 'int64' for the profits and the weights.
// TODO(user): Merge this code with algorithms/knapsack_solver.
//
// Given n items, each with a profit and a weight and a knapsack of
// capacity c, the goal is to find a subset of the items which fits inside c
// and maximizes the total profit.
// Without loss of generality, profits and weights are assumed to be positive.
//
// From a mathematical point of view, the one-dimensional knapsack problem
// can be modeled by linear constraint:
// Sum(i:1..n)(weight_i * item_i) <= c,
// where item_i is a 0-1 integer variable.
// The goal is to maximize: Sum(i:1..n)(profit_i * item_i).
//
// Example Usage:
// std::vector<double> profits = {0, 0.5, 0.4, 1, 1, 1.1};
// std::vector<double> weights = {9, 6, 2, 1.5, 1.5, 1.5};
// KnapsackSolverForCuts solver("solver");
// solver.Init(profits, weights, capacity);
// bool is_solution_optimal = false;
// std::unique_ptr<TimeLimit> time_limit =
// absl::make_unique<TimeLimit>(time_limit_seconds); // Set the time limit.
// const double profit = solver.Solve(time_limit.get(), &is_solution_optimal);
// const int number_of_items(profits.size());
// for (int item_id(0); item_id < number_of_items; ++item_id) {
// solver.best_solution(item_id); // Access the solution.
// }
#ifndef OR_TOOLS_ALGORITHMS_KNAPSACK_SOLVER_FOR_CUTS_H_
#define OR_TOOLS_ALGORITHMS_KNAPSACK_SOLVER_FOR_CUTS_H_
#include <memory>
#include <string>
#include <vector>
#include "absl/memory/memory.h"
#include "ortools/base/int_type.h"
#include "ortools/base/int_type_indexed_vector.h"
#include "ortools/base/logging.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
// ----- KnapsackAssignementForCuts -----
// KnapsackAssignementForCuts is a small struct used to pair an item with
// its assignment. It is mainly used for search nodes and updates.
struct KnapsackAssignmentForCuts {
KnapsackAssignmentForCuts(int item_id, bool is_in)
: item_id(item_id), is_in(is_in) {}
int item_id;
bool is_in;
};
// ----- KnapsackItemForCuts -----
// KnapsackItemForCuts is a small struct to pair an item weight with its
// corresponding profit.
// The aim of the knapsack problem is to pack as many valuable items as
// possible. A straight forward heuristic is to take those with the greatest
// profit-per-unit-weight. This ratio is called efficiency in this
// implementation. So items will be grouped in vectors, and sorted by
// decreasing efficiency.
struct KnapsackItemForCuts {
KnapsackItemForCuts(int id, double weight, double profit)
: id(id), weight(weight), profit(profit) {}
double GetEfficiency(double profit_max) const {
return (weight > 0) ? profit / weight : profit_max;
}
// The 'id' field is used to retrieve the initial item in order to
// communicate with other propagators and state.
const int id;
const double weight;
const double profit;
};
using KnapsackItemForCutsPtr = std::unique_ptr<KnapsackItemForCuts>;
// ----- KnapsackSearchNodeForCuts -----
// KnapsackSearchNodeForCuts is a class used to describe a decision in the
// decision search tree.
// The node is defined by a pointer to the parent search node and an
// assignment (see KnapsackAssignementForCuts).
// As the current state is not explicitly stored in a search node, one should
// go through the search tree to incrementally build a partial solution from
// a previous search node.
class KnapsackSearchNodeForCuts {
public:
KnapsackSearchNodeForCuts(const KnapsackSearchNodeForCuts* parent,
const KnapsackAssignmentForCuts& assignment);
KnapsackSearchNodeForCuts(const KnapsackSearchNodeForCuts&) = delete;
KnapsackSearchNodeForCuts& operator=(const KnapsackSearchNodeForCuts&) =
delete;
int depth() const { return depth_; }
const KnapsackSearchNodeForCuts* const parent() const { return parent_; }
const KnapsackAssignmentForCuts& assignment() const { return assignment_; }
double current_profit() const { return current_profit_; }
void set_current_profit(double profit) { current_profit_ = profit; }
double profit_upper_bound() const { return profit_upper_bound_; }
void set_profit_upper_bound(double profit) { profit_upper_bound_ = profit; }
int next_item_id() const { return next_item_id_; }
void set_next_item_id(int id) { next_item_id_ = id; }
private:
// 'depth_' is used to navigate efficiently through the search tree.
int depth_;
const KnapsackSearchNodeForCuts* const parent_;
KnapsackAssignmentForCuts assignment_;
// 'current_profit_' and 'profit_upper_bound_' fields are used to sort search
// nodes using a priority queue. That allows to pop the node with the best
// upper bound, and more importantly to stop the search when optimality is
// proved.
double current_profit_;
double profit_upper_bound_;
// 'next_item_id_' field allows to avoid an O(number_of_items) scan to find
// next item to select. This is done for free by the upper bound computation.
int next_item_id_;
};
// ----- KnapsackSearchPathForCuts -----
// KnapsackSearchPathForCuts is a small class used to represent the path between
// a node to another node in the search tree.
// As the solution state is not stored for each search node, the state should
// be rebuilt at each node. One simple solution is to apply all decisions
// between the node 'to' and the root. This can be computed in
// O(number_of_items).
//
// However, it is possible to achieve better average complexity. Two
// consecutively explored nodes are usually close enough (i.e., much less than
// number_of_items) to benefit from an incremental update from the node
// 'from' to the node 'to'.
//
// The 'via' field is the common parent of 'from' field and 'to' field.
// So the state can be built by reverting all decisions from 'from' to 'via'
// and then applying all decisions from 'via' to 'to'.
class KnapsackSearchPathForCuts {
public:
KnapsackSearchPathForCuts(const KnapsackSearchNodeForCuts* from,
const KnapsackSearchNodeForCuts* to);
KnapsackSearchPathForCuts(const KnapsackSearchPathForCuts&) = delete;
KnapsackSearchPathForCuts& operator=(const KnapsackSearchPathForCuts&) =
delete;
void Init();
const KnapsackSearchNodeForCuts& from() const { return *from_; }
const KnapsackSearchNodeForCuts& via() const { return *via_; }
const KnapsackSearchNodeForCuts& to() const { return *to_; }
private:
const KnapsackSearchNodeForCuts* from_;
const KnapsackSearchNodeForCuts* via_; // Computed in 'Init'.
const KnapsackSearchNodeForCuts* to_;
};
// From the given node, this method moves up the tree and returns the node at
// given depth.
const KnapsackSearchNodeForCuts* MoveUpToDepth(
const KnapsackSearchNodeForCuts* node, int depth);
// ----- KnapsackStateForCuts -----
// KnapsackStateForCuts represents a partial solution to the knapsack problem.
class KnapsackStateForCuts {
public:
KnapsackStateForCuts();
KnapsackStateForCuts(const KnapsackStateForCuts&) = delete;
KnapsackStateForCuts& operator=(const KnapsackStateForCuts&) = delete;
// Initializes vectors with number_of_items set to false (i.e. not bound yet).
void Init(int number_of_items);
// Updates the state by applying or reverting a decision.
// Returns false if fails, i.e. trying to apply an inconsistent decision
// to an already assigned item.
bool UpdateState(bool revert, const KnapsackAssignmentForCuts& assignment);
int GetNumberOfItems() const { return is_bound_.size(); }
bool is_bound(int id) const { return is_bound_.at(id); }
bool is_in(int id) const { return is_in_.at(id); }
private:
// Vectors 'is_bound_' and 'is_in_' contain a boolean value for each item.
// 'is_bound_(item_i)' is false when there is no decision for item_i yet.
// When item_i is bound, 'is_in_(item_i)' represents the presence (true) or
// the absence (false) of item_i in the current solution.
std::vector<bool> is_bound_;
std::vector<bool> is_in_;
};
// ----- KnapsackPropagatorForCuts -----
// KnapsackPropagatorForCuts is used to enforce a capacity constraint.
// It is supposed to compute profit lower and upper bounds, and get the next
// item to select, it can be seen as a 0-1 Knapsack solver. The most efficient
// way to compute the upper bound is to iterate on items in
// profit-per-unit-weight decreasing order. The break item is commonly defined
// as the first item for which there is not enough remaining capacity. Selecting
// this break item as the next-item-to-assign usually gives the best results
// (see Greenberg & Hegerich).
//
// This is exactly what is implemented in this class.
//
// It is possible to compute a better profit lower bound almost for free. During
// the scan to find the break element all unbound items are added just as if
// they were part of the current solution. This is used in both
// ComputeProfitBounds() and CopyCurrentSolution(). For incrementality reasons,
// the ith item should be accessible in O(1). That's the reason why the item
// vector has to be duplicated 'sorted_items_'.
class KnapsackPropagatorForCuts {
public:
explicit KnapsackPropagatorForCuts(const KnapsackStateForCuts* state);
~KnapsackPropagatorForCuts();
KnapsackPropagatorForCuts(const KnapsackPropagatorForCuts&) = delete;
KnapsackPropagatorForCuts& operator=(const KnapsackPropagatorForCuts&) =
delete;
// Initializes the data structure and then calls InitPropagator.
void Init(const std::vector<double>& profits,
const std::vector<double>& weights, double capacity);
// Updates data structure. Returns false on failure.
bool Update(bool revert, const KnapsackAssignmentForCuts& assignment);
// ComputeProfitBounds should set 'profit_lower_bound_' and
// 'profit_upper_bound_' which are constraint specific.
void ComputeProfitBounds();
// Returns the id of next item to assign.
// Returns kNoSelection when all items are bound.
int GetNextItemId() const { return break_item_id_; }
double current_profit() const { return current_profit_; }
double profit_lower_bound() const { return profit_lower_bound_; }
double profit_upper_bound() const { return profit_upper_bound_; }
// Copies the current state into 'solution'.
// All unbound items are set to false (i.e. not in the knapsack).
void CopyCurrentStateToSolution(std::vector<bool>* solution) const;
// Initializes the propagator. This method is called by Init() after filling
// the fields defined in this class.
void InitPropagator();
const KnapsackStateForCuts& state() const { return *state_; }
const std::vector<KnapsackItemForCutsPtr>& items() const { return items_; }
void set_profit_lower_bound(double profit) { profit_lower_bound_ = profit; }
void set_profit_upper_bound(double profit) { profit_upper_bound_ = profit; }
private:
// An obvious additional profit upper bound corresponds to the linear
// relaxation: remaining_capacity * efficiency of the break item.
// It is possible to do better in O(1), using Martello-Toth bound U2.
// The main idea is to enforce integrality constraint on the break item,
// i.e. either the break item is part of the solution, or it is not.
// So basically the linear relaxation is done on the item before the break
// item, or the one after the break item. This is what GetAdditionalProfit
// method implements.
double GetAdditionalProfitUpperBound(double remaining_capacity,
int break_item_id) const;
double capacity_;
double consumed_capacity_;
int break_item_id_;
std::vector<KnapsackItemForCutsPtr> sorted_items_;
double profit_max_;
std::vector<KnapsackItemForCutsPtr> items_;
double current_profit_;
double profit_lower_bound_;
double profit_upper_bound_;
const KnapsackStateForCuts* const state_;
};
// ----- KnapsackSolverForCuts -----
// KnapsackSolverForCuts is the one-dimensional knapsack solver class.
// In the current implementation, the next item to assign is given by the
// master propagator. Using SetMasterPropagator allows changing the default
// (propagator of the first dimension).
class KnapsackSolverForCuts {
public:
explicit KnapsackSolverForCuts(std::string solver_name);
KnapsackSolverForCuts(const KnapsackSolverForCuts&) = delete;
KnapsackSolverForCuts& operator=(const KnapsackSolverForCuts&) = delete;
// Initializes the solver and enters the problem to be solved.
void Init(const std::vector<double>& profits,
const std::vector<double>& weights, const double capacity);
int GetNumberOfItems() const { return state_.GetNumberOfItems(); }
// Gets the lower and the upper bound when the item is in or out of the
// knapsack. To ensure objects are correctly initialized, this method should
// not be called before Init().
void GetLowerAndUpperBoundWhenItem(int item_id, bool is_item_in,
double* lower_bound, double* upper_bound);
// Get the best upper bound found so far.
double GetUpperBound() { return GetAggregatedProfitUpperBound(); }
// The solver stops if a solution with profit better than
// 'solution_lower_bound_threshold' is found.
void set_solution_lower_bound_threshold(
const double solution_lower_bound_threshold) {
solution_lower_bound_threshold_ = solution_lower_bound_threshold;
}
// The solver stops if the upper bound on profit drops below
// 'solution_upper_bound_threshold'.
void set_solution_upper_bound_threshold(
const double solution_upper_bound_threshold) {
solution_upper_bound_threshold_ = solution_upper_bound_threshold;
}
// Stops the knapsack solver after processing 'node_limit' nodes.
void set_node_limit(const int64 node_limit) { node_limit_ = node_limit; }
// Solves the problem and returns the profit of the best solution found.
double Solve(TimeLimit* time_limit, bool* is_solution_optimal);
// Returns true if the item 'item_id' is packed in the optimal knapsack.
bool best_solution(int item_id) const {
DCHECK(item_id < best_solution_.size());
return best_solution_[item_id];
}
const std::string& GetName() const { return solver_name_; }
private:
// Updates propagator reverting/applying all decision on the path. Returns
// true if the propagation fails. Note that even if it fails, propagator
// should be updated to be in a stable state in order to stay incremental.
bool UpdatePropagators(const KnapsackSearchPathForCuts& path);
// Updates propagator reverting/applying one decision. Returns true if
// the propagation fails. Note that even if it fails, propagator should
// be updated to be in a stable state in order to stay incremental.
bool IncrementalUpdate(bool revert,
const KnapsackAssignmentForCuts& assignment);
// Updates the best solution if the current solution has a better profit.
void UpdateBestSolution();
// Returns true if new relevant search node was added to the nodes array. That
// means this node should be added to the search queue too.
bool MakeNewNode(const KnapsackSearchNodeForCuts& node, bool is_in);
// Gets the aggregated (min) profit upper bound among all propagators.
double GetAggregatedProfitUpperBound();
double GetCurrentProfit() const { return propagator_.current_profit(); }
int GetNextItemId() const { return propagator_.GetNextItemId(); }
KnapsackPropagatorForCuts propagator_;
std::vector<std::unique_ptr<KnapsackSearchNodeForCuts>> search_nodes_;
KnapsackStateForCuts state_;
double best_solution_profit_;
std::vector<bool> best_solution_;
const std::string solver_name_;
double solution_lower_bound_threshold_ =
std::numeric_limits<double>::infinity();
double solution_upper_bound_threshold_ =
-std::numeric_limits<double>::infinity();
int64 node_limit_ = kint64max;
};
// TODO(user) : Add reduction algorithm.
} // namespace operations_research
#endif // OR_TOOLS_ALGORITHMS_KNAPSACK_SOLVER_FOR_CUTS_H_