forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dobble_ls.cc
760 lines (690 loc) · 29.8 KB
/
dobble_ls.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This problem is inspired by the Dobble game (aka Spot-It in the
// USA). In this game, we have 57 cards, 57 symbols, and 8 symbols
// per card. We want to assign symbols per card such that any two
// cards have exactly one symbol in common. These numbers can be
// generalized: we have N cards, each with K different symbols, and
// there are N different symbols overall.
//
// This is a feasibility problem. We transform that into an
// optimization problem where we penalize cards whose intersection is
// of cardinality different from 1. A feasible solution of the
// original problem is a solution with a zero cost.
//
// Furthermore, we solve this problem using local search, and with a
// dedicated constraint.
//
// The purpose of the example is to demonstrates how to write local
// search operators and local search filters.
#include <algorithm>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/map_util.h"
#include "ortools/base/random.h"
#include "ortools/constraint_solver/constraint_solveri.h"
#include "ortools/util/bitset.h"
DEFINE_int32(symbols_per_card, 8, "Number of symbols per card.");
DEFINE_int32(ls_seed, 1,
"Seed for the random number generator (used by "
"the Local Neighborhood Search).");
DEFINE_bool(use_filter, true, "Use filter in the local search to prune moves.");
DEFINE_int32(num_swaps, 4,
"If num_swap > 0, the search for an optimal "
"solution will be allowed to use an operator that swaps the "
"symbols of up to num_swap pairs ((card1, symbol on card1), "
"(card2, symbol on card2)).");
DEFINE_int32(time_limit_in_ms, 60000,
"Time limit for the global search in ms.");
namespace operations_research {
// ----- Dedicated constraint to count the symbols shared by two cards -----
// This constraint maintains:
// sum_i(card1_symbol_vars[i]*card2_symbol_vars[i]) == count_var.
// with all card_symbol_vars[i] being boolean variables.
class SymbolsSharedByTwoCardsConstraint : public Constraint {
public:
// This constructor does not take any ownership on its arguments.
SymbolsSharedByTwoCardsConstraint(
Solver* const solver, const std::vector<IntVar*>& card1_symbol_vars,
const std::vector<IntVar*>& card2_symbol_vars,
IntVar* const num_symbols_in_common_var)
: Constraint(solver),
card1_symbol_vars_(card1_symbol_vars),
card2_symbol_vars_(card2_symbol_vars),
num_symbols_(card1_symbol_vars.size()),
num_symbols_in_common_var_(num_symbols_in_common_var) {
// Checks that cards have the same size.
CHECK_EQ(card1_symbol_vars.size(), card2_symbol_vars.size());
// Verify that we are really dealing with boolean variables.
for (int i = 0; i < num_symbols_; ++i) {
CHECK_GE(card1_symbol_vars_[i]->Min(), 0);
CHECK_GE(card2_symbol_vars_[i]->Min(), 0);
CHECK_LE(card1_symbol_vars_[i]->Max(), 1);
CHECK_LE(card2_symbol_vars_[i]->Max(), 1);
}
}
~SymbolsSharedByTwoCardsConstraint() override {}
// Adds observers (named Demon) to variable events. These demons are
// responsible for implementing the propagation algorithm of the
// constraint.
void Post() override {
// Create a demon 'global_demon' that will bind events on
// variables to the calling of the 'InitialPropagate()' method. As
// this method is expensive, 'global_demon' has a low priority. As
// such, InitialPropagate will be called after all normal demons
// and constraints have reached a fixed point. Note
// that ownership of the 'global_demon' belongs to the solver.
Demon* const global_demon =
solver()->MakeDelayedConstraintInitialPropagateCallback(this);
// Attach to all variables.
for (int i = 0; i < num_symbols_; ++i) {
card1_symbol_vars_[i]->WhenBound(global_demon);
card2_symbol_vars_[i]->WhenBound(global_demon);
}
// Attach to cardinality variable.
num_symbols_in_common_var_->WhenBound(global_demon);
}
// This is the main propagation method.
//
// It scans all card1_symbol_vars * card2_symbol_vars and increments 3
// counters:
// - min_symbols_in_common if both booleans variables are bound to true.
// - max_symbols_in_common if both booleans are not bound to false.
//
// Then we know that num_symbols_in_common_var is in the range
// [min_symbols_in_common .. max_symbols_in_common].
//
// Now, if num_symbols_in_common_var->Max() ==
// min_symbols_in_common, then all products that contribute to
// max_symbols_in_common but not to min_symbols_in_common should be
// set to 0.
//
// Conversely, if num_symbols_in_common_var->Min() ==
// max_symbols_in_common, then all products that contribute to
// max_symbols_in_common should be set to 1.
void InitialPropagate() override {
int max_symbols_in_common = 0;
int min_symbols_in_common = 0;
for (int i = 0; i < num_symbols_; ++i) {
if (card1_symbol_vars_[i]->Min() == 1 &&
card2_symbol_vars_[i]->Min() == 1) {
min_symbols_in_common++;
}
if (card1_symbol_vars_[i]->Max() == 1 &&
card2_symbol_vars_[i]->Max() == 1) {
max_symbols_in_common++;
}
}
num_symbols_in_common_var_->SetRange(min_symbols_in_common,
max_symbols_in_common);
// If min_symbols_in_common == max_symbols_in_common, it means
// that num_symbols_in_common_var_ is already fully determined: we
// have nothing to do.
if (min_symbols_in_common == max_symbols_in_common) {
DCHECK_EQ(min_symbols_in_common, num_symbols_in_common_var_->Max());
DCHECK_EQ(min_symbols_in_common, num_symbols_in_common_var_->Min());
return;
}
if (num_symbols_in_common_var_->Max() == min_symbols_in_common) {
// All undecided product terms should be forced to 0.
for (int i = 0; i < num_symbols_; ++i) {
// If both Min() are 0, then we can't force either variable to
// be zero (even if we know that their product is zero),
// because either variable could be 1 as long as the other is
// 0.
if (card1_symbol_vars_[i]->Min() == 1 &&
card2_symbol_vars_[i]->Min() == 0) {
card2_symbol_vars_[i]->SetValue(0);
} else if (card2_symbol_vars_[i]->Min() == 1 &&
card1_symbol_vars_[i]->Min() == 0) {
card1_symbol_vars_[i]->SetValue(0);
}
}
} else if (num_symbols_in_common_var_->Min() == max_symbols_in_common) {
// All undecided product terms should be forced to 1.
for (int i = 0; i < num_symbols_; ++i) {
if (card1_symbol_vars_[i]->Max() == 1 &&
card2_symbol_vars_[i]->Max() == 1) {
// Note that we also force already-decided product terms,
// but this doesn't change anything.
card1_symbol_vars_[i]->SetValue(1);
card2_symbol_vars_[i]->SetValue(1);
}
}
}
}
private:
std::vector<IntVar*> card1_symbol_vars_;
std::vector<IntVar*> card2_symbol_vars_;
const int num_symbols_;
IntVar* const num_symbols_in_common_var_;
};
// Creates two integer variables: one that counts the number of
// symbols common to two cards, and one that counts the absolute
// difference between the first var and 1 (i.e. the violation of the
// objective). Returns the latter (both vars are owned by the Solver
// anyway).
IntVar* CreateViolationVar(Solver* const solver,
const std::vector<IntVar*>& card1_symbol_vars,
const std::vector<IntVar*>& card2_symbol_vars,
int num_symbols_per_card) {
IntVar* const num_symbols_in_common_var =
solver->MakeIntVar(0, num_symbols_per_card);
// RevAlloc transfers the ownership of the constraint to the solver.
solver->AddConstraint(solver->RevAlloc(new SymbolsSharedByTwoCardsConstraint(
solver, card1_symbol_vars, card2_symbol_vars,
num_symbols_in_common_var)));
return solver->MakeAbs(solver->MakeSum(num_symbols_in_common_var, -1))->Var();
}
// ---------- Local Search ----------
// The "local search", or "local neighborhood search", works like
// this: starting from a given solution to the problem, other
// solutions in its neighborhood are generated from it, some of them
// might be selected (because they're better, for example) to become a
// starting point for other neighborhood searches, and so on.. The
// detailed search algorithm can vary and depends on the problem to
// solve.
//
// The fundamental building block for the local search is the "search
// operator", which has three fundamental methods in its API:
//
// - Its constructor, which keeps (mutable) references to the
// solver's internal variables (here, the card symbol variables).
//
// - OnStart(), which is called at the start of a local search, and
// after each solution (i.e. when the local search starts again from
// that new solution). The solver variables are supposed to represent
// a valid solution at this point. This method is used by the search
// operator to initialize its state and be ready to start the
// exploration of the neighborhood of the given solution.
//
// - MakeOneNeighbor(), which picks a neighbor of the initial
// solution, and changes the solver's internal variables accordingly
// to represent that new state.
//
// All local search operators on this problem will derive from the
// parent class below, which contains some shared code to store a
// compact representation of which symbols appeal on each cards.
class DobbleOperator : public IntVarLocalSearchOperator {
public:
DobbleOperator(const std::vector<IntVar*>& card_symbol_vars, int num_cards,
int num_symbols, int num_symbols_per_card)
: IntVarLocalSearchOperator(card_symbol_vars),
num_cards_(num_cards),
num_symbols_(num_symbols),
num_symbols_per_card_(num_symbols_per_card),
symbols_per_card_(num_cards) {
CHECK_GT(num_cards, 0);
CHECK_GT(num_symbols, 0);
CHECK_GT(num_symbols_per_card, 0);
for (int card = 0; card < num_cards; ++card) {
symbols_per_card_[card].assign(num_symbols_per_card, -1);
}
}
~DobbleOperator() override {}
protected:
// OnStart() simply stores the current symbols per card in
// symbols_per_card_, and defers further initialization to the
// subclass's InitNeighborhoodSearch() method.
void OnStart() override {
for (int card = 0; card < num_cards_; ++card) {
int found = 0;
for (int symbol = 0; symbol < num_symbols_; ++symbol) {
if (Value(VarIndex(card, symbol)) == 1) {
symbols_per_card_[card][found++] = symbol;
}
}
DCHECK_EQ(num_symbols_per_card_, found);
}
InitNeighborhoodSearch();
}
virtual void InitNeighborhoodSearch() = 0;
// Find the index of the variable corresponding to the given symbol
// on the given card.
int VarIndex(int card, int symbol) { return card * num_symbols_ + symbol; }
// Move symbol1 from card1 to card2, and symbol2 from card2 to card1.
void SwapTwoSymbolsOnCards(int card1, int symbol1, int card2, int symbol2) {
SetValue(VarIndex(card1, symbol1), 0);
SetValue(VarIndex(card2, symbol2), 0);
SetValue(VarIndex(card1, symbol2), 1);
SetValue(VarIndex(card2, symbol1), 1);
}
const int num_cards_;
const int num_symbols_;
const int num_symbols_per_card_;
std::vector<std::vector<int> > symbols_per_card_;
};
// ----- Swap 2 symbols -----
// This operator explores *all* pairs (card1, some symbol on card1),
// (card2, some symbol on card2) and swaps the symbols between the two
// cards.
//
// Note that this could create invalid moves (for example, by adding a
// symbol to a card that already had it); see the DobbleFilter class
// below to see how we filter those out.
class SwapSymbols : public DobbleOperator {
public:
SwapSymbols(const std::vector<IntVar*>& card_symbol_vars, int num_cards,
int num_symbols, int num_symbols_per_card)
: DobbleOperator(card_symbol_vars, num_cards, num_symbols,
num_symbols_per_card),
current_card1_(-1),
current_card2_(-1),
current_symbol1_(-1),
current_symbol2_(-1) {}
~SwapSymbols() override {}
// Finds the next swap, returns false when it has finished.
bool MakeOneNeighbor() override {
if (!PickNextSwap()) {
VLOG(1) << "finished neighborhood";
return false;
}
const int symbol1 = symbols_per_card_[current_card1_][current_symbol1_];
const int symbol2 = symbols_per_card_[current_card2_][current_symbol2_];
SwapTwoSymbolsOnCards(current_card1_, symbol1, current_card2_, symbol2);
return true;
}
private:
// Reinit the exploration loop.
void InitNeighborhoodSearch() override {
current_card1_ = 0;
current_card2_ = 1;
current_symbol1_ = 0;
current_symbol2_ = -1;
}
// Compute the next move. It returns false when there are none.
bool PickNextSwap() {
current_symbol2_++;
if (current_symbol2_ == num_symbols_per_card_) {
current_symbol2_ = 0;
current_symbol1_++;
if (current_symbol1_ == num_symbols_per_card_) {
current_symbol1_ = 0;
current_card2_++;
if (current_card2_ == num_cards_) {
current_card1_++;
current_card2_ = current_card1_ + 1;
}
}
}
return current_card1_ < num_cards_ - 1;
}
int current_card1_;
int current_card2_;
int current_symbol1_;
int current_symbol2_;
};
// Multiple swaps of two symbols. This operator is an expanded version
// of the previous operator.
//
// At each step, it will pick a number num_swaps at random in
// [2 .. max_num_swaps], and then pick num_swaps random pairs (card1,
// some symbol on card1), (card2, some symbol on card2), and swap the
// symbols of each pair.
//
// As the search space (the "neighborhood") is huge, we use a
// randomized "infinite" version instead of an iterative, exhaustive
// one.
class SwapSymbolsOnCardPairs : public DobbleOperator {
public:
SwapSymbolsOnCardPairs(const std::vector<IntVar*>& card_symbol_vars,
int num_cards, int num_symbols,
int num_symbols_per_card, int max_num_swaps)
: DobbleOperator(card_symbol_vars, num_cards, num_symbols,
num_symbols_per_card),
rand_(FLAGS_ls_seed),
max_num_swaps_(max_num_swaps) {
CHECK_GE(max_num_swaps, 2);
}
~SwapSymbolsOnCardPairs() override {}
protected:
bool MakeOneNeighbor() override {
const int num_swaps = rand_.Uniform(max_num_swaps_ - 1) + 2;
for (int i = 0; i < num_swaps; ++i) {
const int card_1 = rand_.Uniform(num_cards_);
const int symbol_index_1 = rand_.Uniform(num_symbols_per_card_);
const int symbol_1 = symbols_per_card_[card_1][symbol_index_1];
const int card_2 = rand_.Uniform(num_cards_);
const int symbol_index_2 = rand_.Uniform(num_symbols_per_card_);
const int symbol_2 = symbols_per_card_[card_2][symbol_index_2];
SwapTwoSymbolsOnCards(card_1, symbol_1, card_2, symbol_2);
}
return true;
}
void InitNeighborhoodSearch() override {}
private:
ACMRandom rand_;
const int max_num_swaps_;
};
// ----- Local Search Filter -----
// A filter is responsible for rejecting a local search move faster
// than what the propagation of the constraint solver would do.
// Its API consists in:
// - The constructor, which takes as input a reference to all the
// variables relevant to the filter.
// - OnSynchronize(), called at the beginning of the search and
// after each move to a new solution (when the local search
// restarts from it).
// - Accept(), which takes as input an attempted move (in the form
// of a Delta to tentatively apply to the variables), and returns
// true iff this move is found valid.
//
// To decide if a move is valid, first this DobbleFilter builds a
// bitmap of symbols per card. Then for each move, it updates the
// bitmap according to the move and checks the following constraints:
// - First, each card still has num_symbols_per_card symbols. - The
// cost of the assignment described by the move is better than the
// current one.
// After the check is done, the original bitmap is restored if the
// move was rejected, so as to be ready for the next evaluation.
//
// Please note that this filter uses a fixed size bitset and
// effectively limits the number of cards to 63, and thus the number
// of symbols per card to 8.
class DobbleFilter : public IntVarLocalSearchFilter {
public:
DobbleFilter(const std::vector<IntVar*>& card_symbol_vars, int num_cards,
int num_symbols, int num_symbols_per_card)
: IntVarLocalSearchFilter(card_symbol_vars),
num_cards_(num_cards),
num_symbols_(num_symbols),
num_symbols_per_card_(num_symbols_per_card),
temporary_bitset_(0),
symbol_bitmask_per_card_(num_cards, 0),
violation_costs_(num_cards_, std::vector<int>(num_cards_, 0)) {}
// We build the current bitmap and the matrix of violation cost
// between any two cards.
void OnSynchronize(const Assignment* delta) override {
symbol_bitmask_per_card_.assign(num_cards_, 0);
for (int card = 0; card < num_cards_; ++card) {
for (int symbol = 0; symbol < num_symbols_; ++symbol) {
if (Value(VarIndex(card, symbol))) {
SetBit64(&symbol_bitmask_per_card_[card], symbol);
}
}
}
for (int card1 = 0; card1 < num_cards_; ++card1) {
for (int card2 = 0; card2 < num_cards_; ++card2) {
violation_costs_[card1][card2] = ViolationCost(BitCount64(
symbol_bitmask_per_card_[card1] & symbol_bitmask_per_card_[card2]));
}
}
DCHECK(CheckCards());
}
// The LocalSearchFilter::Accept() API also takes a deltadelta,
// which is the difference between the current delta and the last
// delta that was given to Accept() -- but we don't use it here.
bool Accept(Assignment* delta, Assignment* unused_deltadelta) override {
const Assignment::IntContainer& solution_delta = delta->IntVarContainer();
const int solution_delta_size = solution_delta.Size();
// The input const Assignment* delta given to Accept() may
// actually contain "Deactivated" elements, which represent
// variables that have been freed -- they are not bound to a
// single value anymore. This happens with LNS-type (Large
// Neighborhood Search) LocalSearchOperator, which are not used in
// this example as of 2012-01; and we refer the reader to
// ./routing.cc for an example of such LNS-type operators.
//
// For didactical purposes, we will assume for a moment that a
// LNS-type operator might be applied. The Filter will still be
// called, but our DobbleFilter here won't be able to work, since
// it needs every variable to be bound (i.e. have a fixed value),
// in the assignment that it considers. Therefore, we include here
// a snippet of code that will detect if the input assignment is
// not fully bound. For further details, read ./routing.cc -- but
// we strongly advise the reader to first try and understand all
// of this file.
for (int i = 0; i < solution_delta_size; ++i) {
if (!solution_delta.Element(i).Activated()) {
VLOG(1) << "Element #" << i << " of the delta assignment given to"
<< " DobbleFilter::Accept() is not activated (i.e. its variable"
<< " is not bound to a single value anymore). This means that"
<< " we are in a LNS phase, and the DobbleFilter won't be able"
<< " to filter anything. Returning true.";
return true;
}
}
VLOG(1) << "No LNS, size = " << solution_delta_size;
// Collect the set of cards that have been modified by this move.
std::vector<int> touched_cards;
ComputeTouchedCards(solution_delta, &touched_cards);
// Check basic metrics to fail fast.
if (!CheckCards()) {
RestoreBitsetPerCard();
DCHECK(CheckCards());
VLOG(1) << "reject by size";
return false;
}
// Compute new cost.
const int cost_delta = ComputeNewCost(touched_cards);
// Reset the data structure to the state before the evaluation.
RestoreBitsetPerCard();
// And exit (this is only valid for a greedy descent and would
// reject valid moves in tabu search for instance).
if (cost_delta >= 0) {
VLOG(1) << "reject";
}
return cost_delta < 0;
}
private:
// Undo information after an evaluation.
struct UndoChange {
UndoChange(int c, uint64 b) : card(c), bitset(b) {}
int card;
uint64 bitset;
};
int VarIndex(int card, int symbol) { return card * num_symbols_ + symbol; }
void ClearBitset() { temporary_bitset_ = 0; }
// For each touched card, compare against all others to compute the
// delta in term of cost. We use an bitset to avoid counting twice
// between two cards appearing in the local search move.
int ComputeNewCost(const std::vector<int>& touched_cards) {
ClearBitset();
int cost_delta = 0;
for (int i = 0; i < touched_cards.size(); ++i) {
const int touched = touched_cards[i];
SetBit64(&temporary_bitset_, touched);
const uint64 card_bitset = symbol_bitmask_per_card_[touched];
const std::vector<int>& row_cost = violation_costs_[touched];
for (int other_card = 0; other_card < num_cards_; ++other_card) {
if (!IsBitSet64(&temporary_bitset_, other_card)) {
cost_delta += ViolationCost(
BitCount64(card_bitset & symbol_bitmask_per_card_[other_card]));
cost_delta -= row_cost[other_card];
}
}
}
return cost_delta;
}
// Collects all card indices appearing in the local search move.
void ComputeTouchedCards(const Assignment::IntContainer& solution_delta,
std::vector<int>* const touched_cards) {
ClearBitset();
const int solution_delta_size = solution_delta.Size();
const int kUnassigned = -1;
for (int index = 0; index < solution_delta_size; ++index) {
int64 touched_var = kUnassigned;
FindIndex(solution_delta.Element(index).Var(), &touched_var);
CHECK_NE(touched_var, kUnassigned);
const int card = touched_var / num_symbols_;
const int symbol = touched_var % num_symbols_;
const int new_value = solution_delta.Element(index).Value();
if (!IsBitSet64(&temporary_bitset_, card)) {
SaveRestoreInformation(card);
touched_cards->push_back(card);
SetBit64(&temporary_bitset_, card);
}
if (new_value) {
SetBit64(&symbol_bitmask_per_card_[card], symbol);
} else {
ClearBit64(&symbol_bitmask_per_card_[card], symbol);
}
}
}
// Undo all modifications done when evaluating a move.
void RestoreBitsetPerCard() {
for (int i = 0; i < restore_information_.size(); ++i) {
symbol_bitmask_per_card_[restore_information_[i].card] =
restore_information_[i].bitset;
}
restore_information_.clear();
}
// Stores undo information for a given card.
void SaveRestoreInformation(int card) {
restore_information_.push_back(
UndoChange(card, symbol_bitmask_per_card_[card]));
}
// Checks that after the local search move, each card would still have
// num_symbols_per_card symbols on it.
bool CheckCards() {
for (int i = 0; i < num_cards_; ++i) {
if (num_symbols_per_card_ != BitCount64(symbol_bitmask_per_card_[i])) {
VLOG(1) << "card " << i << " has bitset of size "
<< BitCount64(symbol_bitmask_per_card_[i]);
return false;
}
}
return true;
}
int ViolationCost(uint64 cardinality) const {
return (cardinality > 0 ? cardinality - 1 : 1);
}
const int num_cards_;
const int num_symbols_;
const int num_symbols_per_card_;
uint64 temporary_bitset_;
std::vector<uint64> symbol_bitmask_per_card_;
std::vector<std::vector<int> > violation_costs_;
std::vector<UndoChange> restore_information_;
};
// ----- Main Method -----
void SolveDobble(int num_cards, int num_symbols, int num_symbols_per_card) {
LOG(INFO) << "Solving dobble assignment problem:";
LOG(INFO) << " - " << num_cards << " cards";
LOG(INFO) << " - " << num_symbols << " symbols";
LOG(INFO) << " - " << num_symbols_per_card << " symbols per card";
// Creates the solver.
Solver solver("dobble");
// Creates the matrix of boolean variables (cards * symbols).
std::vector<std::vector<IntVar*> > card_symbol_vars(num_cards);
std::vector<IntVar*> all_card_symbol_vars;
for (int card_index = 0; card_index < num_cards; ++card_index) {
solver.MakeBoolVarArray(num_symbols,
absl::StrFormat("card_%i_", card_index),
&card_symbol_vars[card_index]);
for (int symbol_index = 0; symbol_index < num_symbols; ++symbol_index) {
all_card_symbol_vars.push_back(
card_symbol_vars[card_index][symbol_index]);
}
}
// Creates cardinality intersection variables and remember the
// violation variables.
std::vector<IntVar*> violation_vars;
for (int card1 = 0; card1 < num_cards; ++card1) {
for (int card2 = 0; card2 < num_cards; ++card2) {
if (card1 != card2) {
violation_vars.push_back(
CreateViolationVar(&solver, card_symbol_vars[card1],
card_symbol_vars[card2], num_symbols_per_card));
}
}
}
// Create the objective variable.
IntVar* const objective_var = solver.MakeSum(violation_vars)->Var();
// Add constraint: there must be exactly num_symbols_per_card
// symbols per card.
for (int card = 0; card < num_cards; ++card) {
solver.AddConstraint(
solver.MakeSumEquality(card_symbol_vars[card], num_symbols_per_card));
}
// IMPORTANT OPTIMIZATION:
// Add constraint: each symbol appears on exactly
// num_symbols_per_card cards (i.e. symbols are evenly
// distributed). This constraint is actually redundant, because it
// is a (non-trivial) consequence of the other constraints and of
// the model. But adding it makes the search go faster.
for (int symbol_index = 0; symbol_index < num_symbols; ++symbol_index) {
std::vector<IntVar*> tmp;
for (int card_index = 0; card_index < num_cards; ++card_index) {
tmp.push_back(card_symbol_vars[card_index][symbol_index]);
}
solver.AddConstraint(solver.MakeSumEquality(tmp, num_symbols_per_card));
}
// Search.
LOG(INFO) << "Solving with Local Search";
LOG(INFO) << " - time limit = " << FLAGS_time_limit_in_ms << " ms";
// Start a DecisionBuilder phase to find a first solution, using the
// strategy "Pick some random, yet unassigned card symbol variable
// and set its value to 1".
DecisionBuilder* const build_db = solver.MakePhase(
all_card_symbol_vars, Solver::CHOOSE_RANDOM, // Solver::IntVarStrategy
Solver::ASSIGN_MAX_VALUE); // Solver::IntValueStrategy
// Creates local search operators.
std::vector<LocalSearchOperator*> operators;
LocalSearchOperator* const switch_operator = solver.RevAlloc(new SwapSymbols(
all_card_symbol_vars, num_cards, num_symbols, num_symbols_per_card));
operators.push_back(switch_operator);
LOG(INFO) << " - add switch operator";
if (FLAGS_num_swaps > 0) {
LocalSearchOperator* const swaps_operator = solver.RevAlloc(
new SwapSymbolsOnCardPairs(all_card_symbol_vars, num_cards, num_symbols,
num_symbols_per_card, FLAGS_num_swaps));
operators.push_back(swaps_operator);
LOG(INFO) << " - add swaps operator with at most " << FLAGS_num_swaps
<< " swaps";
}
// Creates filter.
std::vector<LocalSearchFilter*> filters;
if (FLAGS_use_filter) {
filters.push_back(solver.RevAlloc(new DobbleFilter(
all_card_symbol_vars, num_cards, num_symbols, num_symbols_per_card)));
}
// Main decision builder that regroups the first solution decision
// builder and the combination of local search operators and
// filters.
DecisionBuilder* const final_db = solver.MakeLocalSearchPhase(
all_card_symbol_vars, build_db,
solver.MakeLocalSearchPhaseParameters(
solver.ConcatenateOperators(operators, true),
nullptr, // Sub decision builder, not needed here.
nullptr, // Limit the search for improving move, we will stop
// the exploration of the local search at the first
// improving solution (first accept).
filters));
std::vector<SearchMonitor*> monitors;
// Optimize var search monitor.
OptimizeVar* const optimize = solver.MakeMinimize(objective_var, 1);
monitors.push_back(optimize);
// Search log.
SearchMonitor* const log = solver.MakeSearchLog(100000, optimize);
monitors.push_back(log);
// Search limit.
SearchLimit* const time_limit =
solver.MakeLimit(FLAGS_time_limit_in_ms, kint64max, kint64max, kint64max);
monitors.push_back(time_limit);
// And solve!
solver.Solve(final_db, monitors);
}
} // namespace operations_research
int main(int argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
// These constants comes directly from the dobble game.
// There are actually 55 cards, but we can create up to 57 cards.
const int kSymbolsPerCard = FLAGS_symbols_per_card;
const int kCards = kSymbolsPerCard * (kSymbolsPerCard - 1) + 1;
const int kSymbols = kCards;
operations_research::SolveDobble(kCards, kSymbols, kSymbolsPerCard);
return EXIT_SUCCESS;
}