forked from 3778/COVID-19
-
Notifications
You must be signed in to change notification settings - Fork 2
/
seir_bayes.py
executable file
·229 lines (194 loc) · 8.06 KB
/
seir_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import pandas as pd
import numpy as np
import numpy.random as npr
from scipy.stats import norm, expon
import matplotlib.pyplot as plt
import dask.bag as db
DEFAULT_PARAMS = {
'fator_subr': 40.0,
# these are 95% confidence intervals
# for a lognormal
'gamma': (7.0, 14.0),
'alpha': (4.1, 7.0),
'R0_': (2.5, 6.0),
}
def make_lognormal_params_95_ci(lb, ub):
mean = (ub*lb)**(1/2)
std = (ub/lb)**(1/4)
return mean, std
def run_SEIR_BAYES_model(
N: 'population size',
E0: 'init. exposed population',
I0: 'init. infected population',
R0: 'init. removed population',
R0__params: 'repr. rate mean and std',
gamma_inv_params: 'removal rate mean and std',
alpha_inv_params: 'incubation rate mean and std',
fator_subr: 'subreporting factor, multiples I0 and E0',
t_max: 'numer of days to run',
runs: 'number of runs'
):
I0 = fator_subr*I0
E0 = fator_subr*E0
S0 = N - (I0 + R0 + E0)
t_space = np.arange(0, t_max)
size = (t_max, runs)
S = np.zeros(size)
E = np.zeros(size)
I = np.zeros(size)
R = np.zeros(size)
S[0, ], E[0, ], I[0, ], R[0, ] = S0, E0, I0, R0
R0_ = npr.lognormal(*map(np.log, R0__params), runs)
gamma = 1/npr.lognormal(*map(np.log, gamma_inv_params), runs)
alpha = 1/npr.lognormal(*map(np.log, alpha_inv_params), runs)
beta = R0_*gamma
for t in t_space[1:]:
SE = npr.binomial(S[t-1, ].astype('int'), expon(scale=1/(beta*I[t-1, ]/N)).cdf(1))
EI = npr.binomial(E[t-1, ].astype('int'), expon(scale=1/alpha).cdf(1))
IR = npr.binomial(I[t-1, ].astype('int'), expon(scale=1/gamma).cdf(1))
dS = 0 - SE
dE = SE - EI
dI = EI - IR
dR = IR - 0
S[t, ] = S[t-1, ] + dS
E[t, ] = E[t-1, ] + dE
I[t, ] = I[t-1, ] + dI
R[t, ] = R[t-1, ] + dR
return S, E, I, R, t_space
def seir_bayes_plot(N, E0, I0, R0,
R0__params,
gamma_inv_params,
alpha_inv_params,
t_max, runs, S, E, I, R, t_space):
S0 = N - (I0 + R0 + E0)
# plot
algorithm_text = (
f"for {runs} runs, do:\n"
f"\t$S_0={S0}$\n\t$E_0={E0}$\n\t$I_0={I0}$\n\t$R_0={R0}$\n"
"\t$\\gamma \\sim LogNormal(\mu={:.04}, \\sigma={:.04})$\n"
"\t$\\alpha \\sim LogNormal(\mu={:.04}, \\sigma={:.04})$\n"
"\t$R0 \\sim LogNormal(\mu={:.04}, \\sigma={:.04})$\n"
f"\t$\\beta = \\gamma R0$\n"
f"\tSolve SEIR$(\\alpha, \\gamma, \\beta)$"
).format(*gamma_inv_params, *alpha_inv_params, *R0__params)
title = '(RESULTADO PRELIMINAR) Pessoas afetadas pelo COVID-19, segundo o modelo SEIR-Bayes'
plt.style.use('ggplot')
fig, ax = plt.subplots(figsize=(16,9))
plt.plot(t_space, E.mean(axis=1), '--', t_space, I.mean(axis=1), '--', marker='o')
plt.title(title, fontsize=20)
plt.legend(['Expostas ($\mu \pm \sigma$)',
'Infectadas ($\mu \pm \sigma$)'],
fontsize=20, loc='lower right')
plt.xlabel('t (Dias a partir de 17/Março/2020)', fontsize=20)
plt.ylabel('Pessoas', fontsize=20)
plt.fill_between(t_space,
I.mean(axis=1) + I.std(axis=1),
(I.mean(axis=1) - I.std(axis=1)).clip(I0),
color='b', alpha=0.2)
plt.fill_between(t_space,
E.mean(axis=1) + E.std(axis=1),
(E.mean(axis=1) - E.std(axis=1)).clip(I0),
color='r', alpha=0.2)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax.text(0.05, 0.95, algorithm_text,
transform=ax.transAxes, fontsize=18,
verticalalignment='top', bbox=props)
plt.yscale('log')
return fig
def seir_bayes_interactive_plot(N, E0, I0, R0,
t_max, runs, S, E, I, R, t_space,
scale='log', show_uncertainty=True):
from .visualization import prep_tidy_data_to_plot, make_combined_chart
source = prep_tidy_data_to_plot(E, I, t_space)
chart = make_combined_chart(source,
scale=scale,
show_uncertainty=show_uncertainty)
return chart
def seir_bayes_df_pop(
R0__params: 'repr. rate upper and lower limits' = DEFAULT_PARAMS['R0_'],
gamma_inv_params: 'removal rate upper and lower limits' = DEFAULT_PARAMS['gamma'],
alpha_inv_params: 'incubation rate upper and lower limits' = DEFAULT_PARAMS['alpha'],
fator_subr: 'subreporting factor, multiples I0 and E0' = DEFAULT_PARAMS['fator_subr'],
t_max: 'numer of days to run' = 30,
runs: 'number of runs' = 1000,
date: 'load SEIR(0) for this date' = 'latest'
):
def estimate_removed_and_exposed(df):
return (df
.sort_values('date')
.assign(removed_est=lambda df: df.cases.shift(1).fillna(0) + df.new_cases - df.cases)
.assign(exposed_est=lambda df: (df.cases
.shift(-int(alpha_inv_params[1]))
.fillna(method='ffill')
.fillna(0))))
population = pd.read_csv('data/csv/population/by_city/by_city.csv', index_col=['uf', 'city'])
covid19 = pd.read_csv('data/csv/covid_19/by_city/by_city.csv', parse_dates=['date'])
date = covid19['date'].max() if date == 'latest' else date
# if this fails, something is wrong with the data
assert population.index.is_unique
assert covid19.index.is_unique
SEIR_0 = (
covid19
.groupby(['uf', 'city'], group_keys=False)
.apply(estimate_removed_and_exposed)
[lambda df: df['date'] == date]
.set_index(['uf', 'city'])
.join(population, how='left')
.reset_index()
[['uf', 'city', 'estimated_population', 'exposed_est', 'cases', 'removed_est']]
.query("cases >= 5")
.to_dict(orient='records')
)
# In: SEIR_0[:2]
# Out: [{'uf': 'AC',
# 'city': 'Rio Branco',
# 'estimated_population': 407319.0,
# 'exposed_est': 0.0,
# 'cases': 4,
# 'removed_est': 0.0},
# {'uf': 'AL',
# 'city': 'Maceió',
# 'estimated_population': 1018948.0,
# 'exposed_est': 3.0,
# 'cases': 4,
# 'removed_est': 0.0}]
def run_model(params):
N = params['estimated_population']
E0 = params['exposed_est']
I0 = params['cases']
R0 = params['removed_est']
model_input = (N, E0, I0, R0, R0__params,
gamma_inv_params, alpha_inv_params,
fator_subr,
t_max, runs)
try:
return {**params, 'results': run_SEIR_BAYES_model(*model_input), 'error': False}
except:
return {**params, 'results': model_input, 'error': True}
return (db.from_sequence(SEIR_0)
.map(run_model)
.compute(scheduler='processes'))
if __name__ == '__main__':
N = 13_000_000
E0, I0, R0 = 300, 250, 1
R0__params = make_lognormal_params_95_ci(*DEFAULT_PARAMS['R0_'])
gamma_inv_params = make_lognormal_params_95_ci(*DEFAULT_PARAMS['gamma'])
alpha_inv_params = make_lognormal_params_95_ci(*DEFAULT_PARAMS['alpha'])
fator_subr = DEFAULT_PARAMS['fator_subr']
t_max = 30*6
runs = 1_000
S, E, I, R, t_space = run_SEIR_BAYES_model(
N, E0, I0, R0,
R0__params,
gamma_inv_params,
alpha_inv_params,
fator_subr,
t_max, runs)
fig = seir_bayes_plot(N, E0, I0, R0,
R0__params,
gamma_inv_params,
alpha_inv_params,
t_max, runs, S, E, I, R, t_space)
plt.show()