diff --git a/Jenkinsfile b/Jenkinsfile index 305f3b9e0d86..b615f8e3fca4 100644 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -45,7 +45,7 @@ // ci_lint = "tvmai/ci-lint:v0.51" -ci_gpu = "tvmai/ci-gpu:v0.54" +ci_gpu = "tvmai/ci-gpu:v0.55" ci_cpu = "tvmai/ci-cpu:v0.54" ci_i386 = "tvmai/ci-i386:v0.52" diff --git a/tutorials/frontend/build_gcn.py b/tutorials/frontend/build_gcn.py index e97c83c6c44e..077b066f7f62 100644 --- a/tutorials/frontend/build_gcn.py +++ b/tutorials/frontend/build_gcn.py @@ -46,6 +46,7 @@ import torch.nn as nn import torch.nn.functional as F import dgl +import networkx as nx from dgl.nn.pytorch import GraphConv class GCN(nn.Module): @@ -88,7 +89,7 @@ def load_dataset(dataset="cora"): # Remove self-loops to avoid duplicate passing of a node's feature to itself g = data.graph - g.remove_edges_from(g.selfloop_edges()) + g.remove_edges_from(nx.selfloop_edges(g)) g.add_edges_from(zip(g.nodes, g.nodes)) return g, data @@ -110,7 +111,7 @@ def evaluate(data, logits): Parameters ---------- dataset: str - Name of dataset. You can choose from ['cora', 'citeseer', 'pubmed']. + Name of dataset. You can choose from ['cora', 'citeseer', 'pubmed']. num_layer: int number of hidden layers @@ -251,7 +252,7 @@ def GraphConv(layer_name, ###################################################################### # Prepare the parameters needed in the GraphConv layers # ------------------ -# +# import numpy as np import networkx as nx