From af292eb194bb76d6cedcdbcde3d90c35c4f3543d Mon Sep 17 00:00:00 2001 From: Jared Roesch Date: Wed, 10 Jul 2019 10:16:45 -0700 Subject: [PATCH] [Relay][RFC] Implement type checking for Any (#3221) * Implement type checking for Any Remove code generation related changes Remove compile changes Remove more Remove unification hack Add some code back that was needed, and clean up test Refactor test cases WIP Implement TypeHint AST Add test case which should fail Remove unification changes, and fix bug with let rec Restore unification for shapes Improve error reporting while debugging All examples type check All examples type check WIP First version that works with hints, needs clean up Remove dead code Tweaks Remove type hint Remove unecessary type hint stuff Remove more type hints Clean up Expose Any expression node Address CR Fix Fix solver Kill unecessary code Fix PyLint Fix Relocate loops Fix license and test Lint again Lint again Fix loops Fix docstring Fix template error Fix compiler issue Fix compile err Remove more runtime changes Restore buffer Fix segfault Fix Fix arange * Address feedback * Fix typo * Fix arange * Fix op level3 * Fix issue with Python wrapper --- include/tvm/ir.h | 9 + include/tvm/relay/attrs/transform.h | 12 +- include/tvm/relay/error.h | 10 +- include/tvm/relay/expr.h | 3 + include/tvm/relay/op_attr_types.h | 16 ++ include/tvm/relay/type.h | 3 + include/tvm/runtime/ndarray.h | 2 + python/tvm/_ffi/base.py | 2 +- python/tvm/api.py | 3 +- python/tvm/relay/__init__.py | 2 + python/tvm/relay/expr.py | 2 + python/tvm/relay/frontend/mxnet.py | 6 +- python/tvm/relay/frontend/tensorflow.py | 10 +- python/tvm/relay/loops.py | 65 +++++++ python/tvm/relay/op/transform.py | 10 +- python/tvm/relay/scope_builder.py | 19 ++- python/tvm/relay/ty.py | 14 ++ src/codegen/llvm/codegen_llvm.cc | 4 +- src/lang/buffer.cc | 19 ++- src/lang/ir.cc | 23 ++- src/lang/tensor.cc | 13 +- src/relay/backend/build_module.cc | 15 +- src/relay/backend/compile_engine.cc | 4 +- src/relay/ir/error.cc | 3 +- src/relay/ir/expr.cc | 6 + src/relay/ir/pretty_printer.cc | 10 +- src/relay/ir/type.cc | 4 + src/relay/op/tensor/transform.cc | 215 +++++++++++++++++++----- src/relay/op/type_relations.cc | 5 + src/relay/pass/type_infer.cc | 38 +++-- src/relay/pass/type_solver.cc | 184 ++++++++++++++++---- src/relay/pass/type_solver.h | 11 +- src/runtime/ndarray.cc | 4 + tests/python/relay/test_any.py | 143 ++++++++++++++++ tests/python/relay/test_op_level3.py | 26 +-- 35 files changed, 768 insertions(+), 147 deletions(-) create mode 100644 python/tvm/relay/loops.py create mode 100644 tests/python/relay/test_any.py diff --git a/include/tvm/ir.h b/include/tvm/ir.h index e0c6297d5d03..7524109ec48b 100644 --- a/include/tvm/ir.h +++ b/include/tvm/ir.h @@ -138,6 +138,15 @@ struct Reduce : public ExprNode { static constexpr const char* _type_key = "Reduce"; }; +/*! \brief Any shape. */ +struct Any : public ExprNode { + TVM_DLL static Expr make(); + + void VisitAttrs(AttrVisitor* v) final {} + static const IRNodeType _type_info = IRNodeType::ExtensionExpr; + static constexpr const char* _type_key = "Any"; +}; + /*! * \brief Auxiliary data structure used in IR Pass to indicate a tensor. */ diff --git a/include/tvm/relay/attrs/transform.h b/include/tvm/relay/attrs/transform.h index 1247884f0df8..d09441d73eff 100644 --- a/include/tvm/relay/attrs/transform.h +++ b/include/tvm/relay/attrs/transform.h @@ -123,19 +123,19 @@ struct InitOpAttrs : public tvm::AttrsNode { /*! \brief Attributes used in arange operators */ struct ArangeAttrs : public tvm::AttrsNode { - tvm::Expr start; - tvm::Expr stop; - tvm::Expr step; + Expr start; + Expr stop; + Expr step; DataType dtype; TVM_DECLARE_ATTRS(ArangeAttrs, "relay.attrs.ArangeAttrs") { - TVM_ATTR_FIELD(start).set_default(make_const(Float(32), 0)) + TVM_ATTR_FIELD(start) .describe("Start of interval. The interval includes this value."); TVM_ATTR_FIELD(stop) .describe("Stop of interval. The interval does not include this value."); - TVM_ATTR_FIELD(step).set_default(make_const(Float(32), 1)) + TVM_ATTR_FIELD(step) .describe("Spacing between values."); - TVM_ATTR_FIELD(dtype).set_default(NullValue()) + TVM_ATTR_FIELD(dtype) .describe("Target data type."); } }; // struct ArangeAttrs diff --git a/include/tvm/relay/error.h b/include/tvm/relay/error.h index 5189fd982d37..ef3387b1893b 100644 --- a/include/tvm/relay/error.h +++ b/include/tvm/relay/error.h @@ -64,9 +64,10 @@ struct RelayErrorStream { struct Error : public dmlc::Error { Span sp; - explicit Error(const std::string& msg) : dmlc::Error(msg), sp() {} - Error(const std::stringstream& msg) : dmlc::Error(msg.str()), sp() {} // NOLINT(*) - Error(const RelayErrorStream& msg) : dmlc::Error(msg.str()), sp() {} // NOLINT(*) + explicit Error(const std::string& msg) : dmlc::Error(msg), sp(nullptr) {} + Error(const RelayErrorStream& msg) : dmlc::Error(msg.str()), sp(nullptr) {} // NOLINT(*) + Error(const Error& err) : dmlc::Error(err.what()), sp(nullptr) {} + Error() : dmlc::Error(""), sp(nullptr) {} }; /*! \brief An abstraction around how errors are stored and reported. @@ -118,7 +119,8 @@ class ErrorReporter { * \param err The error message to report. */ inline void ReportAt(const GlobalVar& global, const NodeRef& node, std::stringstream& err) { - this->ReportAt(global, node, Error(err)); + std::string err_msg = err.str(); + this->ReportAt(global, node, Error(err_msg)); } /*! \brief Report an error against a program, using the full program diff --git a/include/tvm/relay/expr.h b/include/tvm/relay/expr.h index cb4f4ddece99..c5cd6bb9e4ab 100644 --- a/include/tvm/relay/expr.h +++ b/include/tvm/relay/expr.h @@ -561,6 +561,9 @@ inline const TTypeNode* ExprNode::type_as() const { return node; } +/*! \brief Pretty print a Relay node, producing a fragment of the Relay text format. */ +std::string PrettyPrint(const NodeRef& node); + /*! * \brief Render the node as a string in the Relay text format. * \param node The node to be rendered. diff --git a/include/tvm/relay/op_attr_types.h b/include/tvm/relay/op_attr_types.h index ca7f6e5d3908..7709a790f5c5 100644 --- a/include/tvm/relay/op_attr_types.h +++ b/include/tvm/relay/op_attr_types.h @@ -158,6 +158,22 @@ using FForwardRewrite = runtime::TypedPackedFunc< using FPrimalGradient = runtime::TypedPackedFunc(const Expr& orig_call, const Expr& output_grad)>; +/*! + * \brief The codegeneration strategy for dynamic dimensions. + */ +enum AnyCodegenStrategy { + /*! \brief The default strategy of using completely variable dimensions. */ + kVariableDimensions +}; + +/* \brief A runtime representation of shape. */ +using Shape = Array; + +using FShapeFunc = runtime::TypedPackedFunc< + Array(const Attrs& attrs, + const Array& inputs, + const Array& out_shapes)>; + } // namespace relay } // namespace tvm #endif // TVM_RELAY_OP_ATTR_TYPES_H_ diff --git a/include/tvm/relay/type.h b/include/tvm/relay/type.h index e42ef1f65ba2..d509fde2a875 100644 --- a/include/tvm/relay/type.h +++ b/include/tvm/relay/type.h @@ -35,6 +35,8 @@ namespace tvm { namespace relay { +using Any = tvm::ir::Any; + /*! \brief Base type of the Relay type hiearchy. */ class TypeNode : public RelayNode { public: @@ -384,6 +386,7 @@ class TypeReporterNode : public Node { * But it is possible for the solver to resolve src by dst as well. */ TVM_DLL virtual void Assign(const Type& dst, const Type& src) = 0; + /*! * \brief assert shape expression comparison. * \note Use assert only if any of the condition input is symbolic. diff --git a/include/tvm/runtime/ndarray.h b/include/tvm/runtime/ndarray.h index aea551ee7d69..993295179842 100644 --- a/include/tvm/runtime/ndarray.h +++ b/include/tvm/runtime/ndarray.h @@ -190,6 +190,8 @@ class NDArray { TVM_DLL static void CopyFromTo( DLTensor* from, DLTensor* to, TVMStreamHandle stream = nullptr); + TVM_DLL std::vector Shape() const; + // internal namespace struct Internal; protected: diff --git a/python/tvm/_ffi/base.py b/python/tvm/_ffi/base.py index e8435081c9ed..c61c5c445442 100644 --- a/python/tvm/_ffi/base.py +++ b/python/tvm/_ffi/base.py @@ -294,7 +294,7 @@ def get_last_ffi_error(): """ c_err_msg = py_str(_LIB.TVMGetLastError()) py_err_msg, err_type = c2pyerror(c_err_msg) - if err_type.startswith("tvm.error."): + if err_type is not None and err_type.startswith("tvm.error."): err_type = err_type[10:] return ERROR_TYPE.get(err_type, TVMError)(py_err_msg) diff --git a/python/tvm/api.py b/python/tvm/api.py index e4777b6e3964..7743ff7fa690 100644 --- a/python/tvm/api.py +++ b/python/tvm/api.py @@ -479,7 +479,8 @@ def extern(shape, raise ValueError("nested tag is not allowed for now") tag = _tag.TagScope.get_current().tag shape = (shape,) if isinstance(shape, (_expr.Expr, _Integral)) else shape - shape = [shape] if isinstance(shape[0], (_expr.Expr, _Integral)) else shape + if shape == () or isinstance(shape[0], (_expr.Expr, _Integral)): + shape = [shape] if in_buffers is not None: in_buffers = [in_buffers] if not isinstance(in_buffers, list) else in_buffers if len(inputs) != len(in_buffers): diff --git a/python/tvm/relay/__init__.py b/python/tvm/relay/__init__.py index dfac85bb1ed2..509196f635b9 100644 --- a/python/tvm/relay/__init__.py +++ b/python/tvm/relay/__init__.py @@ -63,6 +63,7 @@ TensorType = ty.TensorType Kind = ty.Kind TypeVar = ty.TypeVar +ShapeVar = ty.ShapeVar TypeConstraint = ty.TypeConstraint FuncType = ty.FuncType TypeRelation = ty.TypeRelation @@ -71,6 +72,7 @@ RefType = ty.RefType GlobalTypeVar = ty.GlobalTypeVar TypeCall = ty.TypeCall +Any = ty.Any # Expr Expr = expr.Expr diff --git a/python/tvm/relay/expr.py b/python/tvm/relay/expr.py index 8e7f95c4dc26..88779dfd76e0 100644 --- a/python/tvm/relay/expr.py +++ b/python/tvm/relay/expr.py @@ -570,6 +570,7 @@ def const(value, dtype=None): """ if isinstance(value, (_base.numeric_types, (bool, list))): value = _np.array(value, dtype=dtype) + if not dtype: # when dtype is None: int maps to "int32", float maps to "float32" map_dtype = { @@ -578,6 +579,7 @@ def const(value, dtype=None): }.get(value.dtype, None) if map_dtype: value = value.astype(map_dtype) + if isinstance(value, (_np.ndarray, _np.generic)): value = _nd.array(value) diff --git a/python/tvm/relay/frontend/mxnet.py b/python/tvm/relay/frontend/mxnet.py index e40f1dea61a9..3ddf47a11983 100644 --- a/python/tvm/relay/frontend/mxnet.py +++ b/python/tvm/relay/frontend/mxnet.py @@ -491,9 +491,9 @@ def _mx_arange(inputs, attrs): raise tvm.error.OpAttributeUnimplemented( 'Attribute "repeat" is not supported in operator arange.') new_attrs = {} - new_attrs["start"] = attrs.get_float("start", 0) - new_attrs["stop"] = attrs.get_float("stop") - new_attrs["step"] = attrs.get_float("step", 1) + new_attrs["start"] = _expr.const(attrs.get_float("start", 0.0)) + new_attrs["stop"] = _expr.const(attrs.get_float("stop")) + new_attrs["step"] = _expr.const(attrs.get_float("step", 1.0)) new_attrs["dtype"] = attrs.get_str("dtype", "float32") return _op.arange(**new_attrs) diff --git a/python/tvm/relay/frontend/tensorflow.py b/python/tvm/relay/frontend/tensorflow.py index 59e0983e9598..6fff40a92294 100644 --- a/python/tvm/relay/frontend/tensorflow.py +++ b/python/tvm/relay/frontend/tensorflow.py @@ -1059,9 +1059,9 @@ def _impl(inputs, attr, params): return AttrCvt( op_name="arange", ignores=['Tidx'], - extras={'start': start, - "stop": limit, - 'step': delta, + extras={'start': _expr.const(start), + "stop": _expr.const(limit), + 'step': _expr.const(delta), 'dtype': dtype})([], attr) return _impl @@ -1269,8 +1269,8 @@ def _impl(inputs, attr, params): crop = crops[axis - 1] if crop != [0, 0]: indices = tvm.relay.arange( - crop[0], - reshaped_permuted_shape[axis] - crop[1], + _expr.const(crop[0]), + _expr.const(reshaped_permuted_shape[axis] - crop[1]), dtype='int32' ) cropped = tvm.relay.take(cropped, indices=indices, axis=axis) diff --git a/python/tvm/relay/loops.py b/python/tvm/relay/loops.py new file mode 100644 index 000000000000..8e066abda031 --- /dev/null +++ b/python/tvm/relay/loops.py @@ -0,0 +1,65 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# pylint: disable=invalid-name +""" +Utilities for building Relay loops. +""" +from .scope_builder import ScopeBuilder +from . import expr as _expr + +def while_loop(cond, loop_vars, loop_bodies): + """ + Construct a while loop. + + Parameters + ---------- + + cond: Callable[Tuple[relay.Expr], relay.Expr] + The condition of the loop. + + loop_vars: Tuple[relay.Expr] + The variables being looped over. + The initial values of the loop, will be used to + construct the loop variables. + + loop_bodies: Callable[Tuple[relay.Expr], Tuple[relay.Expr]] + The body of the loop, should be a function which + given loop variables produces the output result + also as a tuple + + Returns + ------- + loop: relay.Expr + The loop expression. + """ + sb = ScopeBuilder() + loop = _expr.Var("while_loop") + fresh_vars = [] + + for i, loop_var in enumerate(loop_vars): + name = loop_var.name_hint if isinstance(loop_var, _expr.Var) else "arg{}".format(i) + new_var = _expr.var(name, type_annotation=sb.type_of(loop_var)) + fresh_vars.append(new_var) + + with sb.if_scope(cond(*fresh_vars)): + sb.ret(loop(*loop_bodies(*fresh_vars))) + with sb.else_scope(): + sb.ret(_expr.Tuple(fresh_vars)) + + func = _expr.Function(fresh_vars, sb.get()) + let = _expr.Let(loop, func, loop) + return let diff --git a/python/tvm/relay/op/transform.py b/python/tvm/relay/op/transform.py index bac60a058fca..5137a9c469a4 100644 --- a/python/tvm/relay/op/transform.py +++ b/python/tvm/relay/op/transform.py @@ -17,7 +17,7 @@ """Transform operators.""" from . import _make -from ..expr import TupleWrapper +from ..expr import TupleWrapper, const def cast(data, dtype): @@ -272,7 +272,7 @@ def full_like(data, fill_value): return _make.full_like(data, fill_value) -def arange(start, stop=None, step=1, dtype="float32"): +def arange(start, stop=None, step=None, dtype="float32"): """Return evenly spaced values within a given interval. .. note:: @@ -310,9 +310,13 @@ def arange(start, stop=None, step=1, dtype="float32"): relay.arange(1, 5) = [1, 2, 3, 4] relay.arange(1, 5, 1.5) = [1, 2.5, 4] """ + if step is None: + step = const(1, dtype) + if stop is None: stop = start - start = 0 + start = const(0, dtype=dtype) + return _make.arange(start, stop, step, dtype) diff --git a/python/tvm/relay/scope_builder.py b/python/tvm/relay/scope_builder.py index 337044098cd5..dfe3db187e07 100644 --- a/python/tvm/relay/scope_builder.py +++ b/python/tvm/relay/scope_builder.py @@ -42,7 +42,6 @@ def __exit__(self, ptype, value, trace): else: self._exit_cb() - def _make_lets(bindings, ret_value): """Make a nested let expressions. @@ -176,6 +175,24 @@ def _on_exit(): false_branch) return WithScope(None, _on_exit) + + def type_of(self, expr): + """ + Compute the type of an expression. + + Parameters + ---------- + expr: relay.Expr + The expression to compute the type of. + """ + if isinstance(expr, _expr.Var): + return expr.type_annotation + + ity = _ty.IncompleteType() + var = _expr.var("unify", ity) + self.let(var, expr) + return ity + def ret(self, value): """Set the return value of this scope. diff --git a/python/tvm/relay/ty.py b/python/tvm/relay/ty.py index b1477b75d278..2f3b7e91aaf7 100644 --- a/python/tvm/relay/ty.py +++ b/python/tvm/relay/ty.py @@ -20,6 +20,7 @@ from .base import RelayNode, register_relay_node from . import _make +Any = _make.Any class Type(RelayNode): """The base type for all Relay types.""" @@ -137,6 +138,19 @@ def __init__(self, var, kind=Kind.Type): """ self.__init_handle_by_constructor__(_make.TypeVar, var, kind) +def ShapeVar(name): + """A helper which constructs a type var of which the shape kind. + + Parameters + ---------- + name : str + + Returns + ------- + type_var : tvm.relay.TypeVar + The shape variable. + """ + return TypeVar(name, kind=Kind.ShapeVar) @register_relay_node class GlobalTypeVar(Type): diff --git a/src/codegen/llvm/codegen_llvm.cc b/src/codegen/llvm/codegen_llvm.cc index fde0486483b2..f90829fa5e53 100644 --- a/src/codegen/llvm/codegen_llvm.cc +++ b/src/codegen/llvm/codegen_llvm.cc @@ -970,7 +970,9 @@ llvm::Value* CodeGenLLVM::VisitExpr_(const Call* op) { op->call_type == Call::PureExtern) { return CreateCallExtern(op); } else { - LOG(FATAL) << "Unknown call type "; + LOG(FATAL) << "Unknown call type " << + "name= " << op->name << + " call_type= " << op->call_type; return nullptr; } } diff --git a/src/lang/buffer.cc b/src/lang/buffer.cc index cb5c86710fab..8324938bd7f9 100644 --- a/src/lang/buffer.cc +++ b/src/lang/buffer.cc @@ -246,13 +246,20 @@ inline Expr MergeMulMod(const Expr &base) { inline Expr ElemOffset(const BufferNode* n, Array index) { Expr base = n->elem_offset; if (n->strides.size() == 0) { - CHECK_EQ(n->shape.size(), index.size()); - if (index.size() > 0) { - Expr offset = index[0]; - for (size_t i = 1; i < index.size(); ++i) { - offset = MergeMulMod(offset * n->shape[i] + index[i]); + // Scalar case + if (n->shape.size() == 0 && index.size() == 1) { + auto is_int = index[0].as(); + CHECK(is_int && is_int->value == 0); + base = base + index[0]; + } else { + CHECK_EQ(n->shape.size(), index.size()); + if (index.size() > 0) { + Expr offset = index[0]; + for (size_t i = 1; i < index.size(); ++i) { + offset = MergeMulMod(offset * n->shape[i] + index[i]); + } + base = base + offset; } - base = base + offset; } } else { CHECK_EQ(n->strides.size(), index.size()); diff --git a/src/lang/ir.cc b/src/lang/ir.cc index 612a5e908b54..4eeddd91d80c 100644 --- a/src/lang/ir.cc +++ b/src/lang/ir.cc @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -35,13 +35,24 @@ namespace Internal { using tvm::ir::CommReducerNode; using tvm::ir::Reduce; +using tvm::ir::Any; using tvm::ir::AttrStmt; template<> void ExprNode::accept(IRVisitor *v, const Expr&) const { - LOG(FATAL) << "Reduce do not work with old Visitor, use IRFunctor style visitor"; + LOG(FATAL) << "Reduce does not work with old Visitor, use IRFunctor style visitor"; +} + +template<> +void ExprNode::accept(IRVisitor *v, const Expr&) const { + LOG(FATAL) << "Any does not work with old Visitor, use IRFunctor style visitor"; } +TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable) +.set_dispatch([](const Any *op, IRPrinter *p) { + p->stream << "?"; +}); + TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable) .set_dispatch([](const Reduce *op, IRPrinter *p) { p->stream << "reduce(combiner=" @@ -116,8 +127,14 @@ Expr Reduce::make(CommReducer combiner, Array source, return Expr(n); } +Expr Any::make() { + auto n = make_node(); + return Expr(n); +} + TVM_REGISTER_NODE_TYPE(CommReducerNode); TVM_REGISTER_NODE_TYPE(Reduce); +TVM_REGISTER_NODE_TYPE(Any); TVM_REGISTER_NODE_TYPE(AttrStmt); TVM_REGISTER_NODE_TYPE(FloatImm); diff --git a/src/lang/tensor.cc b/src/lang/tensor.cc index d885d7103606..c2f80d10f790 100644 --- a/src/lang/tensor.cc +++ b/src/lang/tensor.cc @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -38,9 +38,12 @@ Expr Tensor::operator()(Array indices) const { Expr Tensor::operator()(Array indices) const { using HalideIR::Internal::Call; - CHECK_EQ(ndim(), indices.size()) - << "Tensor dimension mismatch in read" - << "ndim = " << ndim() << ", indices.size=" << indices.size(); + if (ndim() != 0) { + CHECK_EQ(ndim(), indices.size()) + << "Tensor dimension mismatch in read" + << "ndim = " << ndim() << ", indices.size=" << indices.size(); + } + auto n = Call::make( (*this)->dtype, (*this)->op->name, indices, Call::Halide, (*this)->op, (*this)->value_index); diff --git a/src/relay/backend/build_module.cc b/src/relay/backend/build_module.cc index 7de77c8bcfd4..f7e106756818 100644 --- a/src/relay/backend/build_module.cc +++ b/src/relay/backend/build_module.cc @@ -417,10 +417,10 @@ class RelayBuildModule : public runtime::ModuleNode { } /*! - * \brief Build relay function to runtime module + * \brief Compile a Relay function to runtime module. * - * \param func Relay Function - * \param params parameters + * \param func The Relay function. + * \param params The parameters. */ void BuildRelay( Function func, @@ -444,8 +444,13 @@ class RelayBuildModule : public runtime::ModuleNode { ret_.graph_json = graph_codegen_->GetJSON(); ret_.params = graph_codegen_->GetParams(); - ret_.mod = tvm::build(graph_codegen_->GetLoweredFunc(), target_host_, - BuildConfig::Current()); + auto lowered_funcs = graph_codegen_->GetLoweredFunc(); + if (lowered_funcs.size() != 0) { + ret_.mod = tvm::build( + lowered_funcs, + target_host_, + BuildConfig::Current()); + } } protected: diff --git a/src/relay/backend/compile_engine.cc b/src/relay/backend/compile_engine.cc index 83e4a36ff4f9..ab906310aaa3 100644 --- a/src/relay/backend/compile_engine.cc +++ b/src/relay/backend/compile_engine.cc @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY diff --git a/src/relay/ir/error.cc b/src/relay/ir/error.cc index 5e621316a136..5ed51f5fd281 100644 --- a/src/relay/ir/error.cc +++ b/src/relay/ir/error.cc @@ -67,6 +67,7 @@ void ErrorReporter::RenderErrors(const Module& module, bool use_color) { std::stringstream err_msg; err_msg << rang::fg::red; + err_msg << " "; for (auto index : error_indicies) { err_msg << this->errors_[index].what() << "; "; } @@ -88,7 +89,7 @@ void ErrorReporter::RenderErrors(const Module& module, bool use_color) { // First we output a header for the errors. annotated_prog << rang::style::bold << std::endl << - "Error(s) have occurred. We have annotated the program with them:" + "Error(s) have occurred. The program has been annotated with them:" << std::endl << std::endl << rang::style::reset; // For each global function which contains errors, we will diff --git a/src/relay/ir/expr.cc b/src/relay/ir/expr.cc index a638006f78e5..9589a0a9f5b8 100644 --- a/src/relay/ir/expr.cc +++ b/src/relay/ir/expr.cc @@ -287,6 +287,8 @@ RefCreate RefCreateNode::make(Expr value) { return RefCreate(n); } +TVM_REGISTER_NODE_TYPE(RefCreateNode); + TVM_REGISTER_API("relay._make.RefCreate") .set_body_typed(RefCreateNode::make); @@ -301,6 +303,8 @@ RefRead RefReadNode::make(Expr ref) { return RefRead(n); } +TVM_REGISTER_NODE_TYPE(RefReadNode); + TVM_REGISTER_API("relay._make.RefRead") .set_body_typed(RefReadNode::make); @@ -316,6 +320,8 @@ RefWrite RefWriteNode::make(Expr ref, Expr value) { return RefWrite(n); } +TVM_REGISTER_NODE_TYPE(RefWriteNode); + TVM_REGISTER_API("relay._make.RefWrite") .set_body_typed(RefWriteNode::make); diff --git a/src/relay/ir/pretty_printer.cc b/src/relay/ir/pretty_printer.cc index cdc56db845b2..09196b49a617 100644 --- a/src/relay/ir/pretty_printer.cc +++ b/src/relay/ir/pretty_printer.cc @@ -686,7 +686,9 @@ class PrettyPrinter : Doc PrintAttr(const NodeRef& value, bool meta = false) { if (value.defined()) { Doc printed_attr; - if (meta) { + if (value.as()) { + printed_attr << "?"; + } else if (meta) { printed_attr = meta_.GetMetaNode(value); } else { printed_attr = VisitAttr(value); @@ -846,6 +848,12 @@ std::string PrettyPrint_(const NodeRef& node, return doc.str(); } +std::string PrettyPrint(const NodeRef& node) { + Doc doc; + doc << PrettyPrinter(false, runtime::TypedPackedFunc()).PrintFinal(node); + return doc.str(); +} + std::string AsText(const NodeRef& node, bool show_meta_data, runtime::TypedPackedFunc annotate) { diff --git a/src/relay/ir/type.cc b/src/relay/ir/type.cc index 35a12052949e..2604896c8605 100644 --- a/src/relay/ir/type.cc +++ b/src/relay/ir/type.cc @@ -228,5 +228,9 @@ TVM_STATIC_IR_FUNCTOR_REGISTER(IRPrinter, vtable) p->stream << "RefTypeNode(" << node->value << ")"; }); +TVM_REGISTER_API("relay._make.Any") +.set_body_typed([]() { return Any::make(); }); + + } // namespace relay } // namespace tvm diff --git a/src/relay/op/tensor/transform.cc b/src/relay/op/tensor/transform.cc index da9386025190..59424884ccfe 100644 --- a/src/relay/op/tensor/transform.cc +++ b/src/relay/op/tensor/transform.cc @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -23,6 +23,7 @@ * \brief Transform operators. */ #include +#include #include #include #include @@ -184,40 +185,77 @@ bool ConcatenateRel(const Array& types, const TypeReporter& reporter) { // types: [data, result] CHECK_EQ(types.size(), 2); + /* If we receive a tuple we can continue, if we receive + * anything but an incomplete type we should signal an + * error. + */ const auto* tensor_tuple = types[0].as(); if (tensor_tuple == nullptr) { - CHECK(types[0].as()) - << "cast: expect input type to be TupleType but get " - << types[0]; + throw relay::Error( + RELAY_ERROR( + "concatenate requires a tuple of tensors as the first argument, found " + << PrettyPrint(types[0]))); + } else if (types[0].as() != nullptr) { return false; } + const auto* param = attrs.as(); + if (tensor_tuple->fields[0].as()) { + return false; + } const auto& first = Downcast(tensor_tuple->fields[0]); // Sanity check: ndim and dtype. const int ndim = static_cast(first->shape.size()); const DataType dtype = first->dtype; + for (const Type& ele : tensor_tuple->fields) { + if (ele.as()) { + return false; + } + const auto& e = Downcast(ele); + int e_ndim = static_cast(e->shape.size()); const DataType& e_dtype = e->dtype; - CHECK_EQ(e_ndim, ndim) << "relay.concatenate requires all tensors have the same ndim"; - CHECK_EQ(e_dtype, dtype) << "relay.concatenate requires all tensors have the same dtype"; + if (e_ndim != ndim) { + throw relay::Error("relay.concatenate requires all tensors have the same ndim"); + } + if (e_dtype != dtype) { + throw relay::Error("relay.concatenate requires all tensors have the same dtype"); + } } // Sanity check: axis int axis = param->axis; - CHECK(-ndim <= axis && axis < ndim) - << "concatenate only accepts `axis` in [-ndim, ndim)" - << ", but got axis = " << axis - << ", and ndim = " << ndim; + if (!(-ndim <= axis && axis < ndim)) { + throw relay::Error(RELAY_ERROR( + "concatenate only accepts `axis` in [-ndim, ndim)" << + ", but got axis = " << axis << + ", and ndim = " << ndim)); + } axis = axis < 0 ? ndim + axis : axis; // Calculate shape std::vector&& oshape = AsVector(first->shape); IndexExpr &concat_dim = oshape[axis]; - for (int i = 1; i < static_cast(tensor_tuple->fields.size()); ++i) { - const auto& e = Downcast(tensor_tuple->fields[i]); - concat_dim += e->shape[axis]; + bool has_any = false; + if (concat_dim.as()) { + has_any = true; + } else { + for (int i = 1; i < static_cast(tensor_tuple->fields.size()); ++i) { + const auto& e = Downcast(tensor_tuple->fields[i]); + if (e->shape[axis].as()) { + has_any = true; + break; + } + concat_dim += e->shape[axis]; + } } - reporter->Assign(types[1], TensorTypeNode::make(oshape, dtype)); + + if (has_any) { + concat_dim = Any::make(); + } + + auto rtype = TensorTypeNode::make(oshape, dtype); + reporter->Assign(types[1], rtype); return true; } @@ -499,6 +537,8 @@ bool ReshapeRel(const Array& types, newshape = param->newshape; } Array oshape; + std::unordered_set used_input_dims; + std::unordered_set used_output_dims; size_t src_idx = 0; int infer_idx = -1; @@ -511,6 +551,8 @@ bool ReshapeRel(const Array& types, } else if (svalue == 0) { // keep same CHECK_LT(src_idx, data_shape.size()); + used_input_dims.insert(src_idx); + used_output_dims.insert(oshape.size()); oshape.push_back(data_shape[src_idx++]); } else if (svalue == -1) { // inference based on rest @@ -522,31 +564,49 @@ bool ReshapeRel(const Array& types, } else if (svalue == -2) { // copy all remaining dims from source while (src_idx < data_shape.size()) { + used_input_dims.insert(src_idx); + used_output_dims.insert(oshape.size()); oshape.push_back(data_shape[src_idx++]); } } else if (svalue == -3) { // merge two dims from source CHECK_LT(src_idx + 1, data_shape.size()); + used_input_dims.insert(src_idx); IndexExpr d1 = data_shape[src_idx++]; + used_input_dims.insert(src_idx); IndexExpr d2 = data_shape[src_idx++]; + used_output_dims.insert(oshape.size()); oshape.push_back(d1 * d2); } else if (svalue == -4) { // split the source dim s into two dims // read the left dim and then the right dim (either can be -1) CHECK_LT(i + 2, newshape.size()); CHECK_LT(src_idx, data_shape.size()); + used_input_dims.insert(src_idx); IndexExpr d0 = data_shape[src_idx++]; Integer d1 = newshape[++i]; Integer d2 = newshape[++i]; if (d1->value == -1) { CHECK(d2->value != -1) << "Split dims cannot both be -1."; - oshape.push_back(d0 / d2); + used_output_dims.insert(oshape.size()); + if (d0.as()) { + oshape.push_back(Any::make()); + } else { + oshape.push_back(d0 / d2); + } + used_output_dims.insert(oshape.size()); oshape.push_back(d2); } else { + used_output_dims.insert(oshape.size()); oshape.push_back(d1); + used_output_dims.insert(oshape.size()); if (d2->value == -1) { - oshape.push_back(d0 / d1); + if (d0.as()) { + oshape.push_back(Any::make()); + } else { + oshape.push_back(d0 / d1); + } } else { oshape.push_back(d2); } @@ -555,9 +615,30 @@ bool ReshapeRel(const Array& types, } if (infer_idx >= 0) { - IndexExpr new_size = arith::ComputeReduce(oshape, 1); - IndexExpr old_size = arith::ComputeReduce(data_shape, 1); - oshape.Set(infer_idx, old_size / new_size); + IndexExpr infer_dim = 1; + for (size_t i = 0; i < data_shape.size(); ++i) { + if (used_input_dims.count(i) != 0) { + continue; + } + if (data_shape[i].as()) { + infer_dim = Any::make(); + break; + } + infer_dim *= data_shape[i]; + } + if (!infer_dim.as()) { + for (size_t i = 0; i < oshape.size(); ++i) { + if (used_output_dims.count(i) != 0) { + continue; + } + if (oshape[i].as()) { + infer_dim = Any::make(); + break; + } + infer_dim /= oshape[i]; + } + } + oshape.Set(infer_idx, infer_dim); } if (param->reverse) { @@ -978,21 +1059,51 @@ and type as the input array. // arange operator TVM_REGISTER_NODE_TYPE(ArangeAttrs); +double ToScalar(const runtime::NDArray& array) { + if (array->dtype.code == kDLInt || array->dtype.code == kDLUInt) { + return reinterpret_cast(array->data)[0]; + } else { + return reinterpret_cast(array->data)[0]; + } +} + bool ArangeRel(const Array& types, int num_inputs, - const Attrs& attrs, + const Attrs& raw_attrs, const TypeReporter& reporter) { - CHECK_EQ(types.size(), 1); - const ArangeAttrs* param = attrs.as(); - IndexExpr num_elem = tvm::cast(tvm::Int(32), tvm::ceil( - tvm::cast(tvm::Float(32), param->stop - param->start) / param->step)); - if (const tvm::ir::IntImm* val = num_elem.as()) { - CHECK_GT(val->value, 0) - << "Invalid arange attributes (start, stop, step): " << param->start - << ", " << param->stop << ", " << param->step; - } - reporter->Assign(types[0], TensorTypeNode::make({num_elem}, param->dtype)); - return true; + CHECK_EQ(types.size(), 4); + const ArangeAttrs* attrs = raw_attrs.as(); + const ConstantNode *cstart, *cstop, *cstep; + + reporter->Assign(types[0], types[1]); + reporter->Assign(types[1], types[2]); + reporter->Assign(types[2], TensorTypeNode::make({}, attrs->dtype)); + + if ((cstart = attrs->start.as()) && + (cstop = attrs->stop.as()) && + (cstep = attrs->step.as())) { + double start = ToScalar(cstart->data); + double stop = ToScalar(cstop->data); + double step = ToScalar(cstep->data); + int32_t num_elem = static_cast(std::ceil((stop - start) / step)); + CHECK_GT(num_elem, 0) + << "Invalid arange attributes (start, stop, step): " << attrs->start + << ", " << attrs->stop << ", " << attrs->step; + reporter->Assign(types[3], TensorTypeNode::make({num_elem}, attrs->dtype)); + return true; + } else { + reporter->Assign(types[3], TensorTypeNode::make({Any::make()}, attrs->dtype)); + return true; + } +} + +inline Tensor DynamicArange(const tvm::Tensor& start, const tvm::Tensor& stop, + const tvm::Tensor& step, tvm::Type dtype, std::string name = "tensor", + std::string tag = topi::kInjective) { + tvm::Expr num_elem = tvm::Var("num_elem"); + return tvm::compute({num_elem}, [&](const Array& indices) { + return tvm::cast(dtype, start[0] + step[0] * indices[0]); + }, name, tag); } Array ArangeCompute(const Attrs& attrs, @@ -1000,35 +1111,53 @@ Array ArangeCompute(const Attrs& attrs, const Type& out_type, const Target& target) { const ArangeAttrs* param = attrs.as(); - return { topi::arange(param->start, param->stop, param->step, param->dtype) }; + Tensor start = inputs[0]; + Tensor stop = inputs[1]; + Tensor step = inputs[2]; + Array empty = {0}; + return { DynamicArange(start, stop, step, param->dtype) }; } -Expr MakeArange(tvm::Expr start, - tvm::Expr stop, - tvm::Expr step, +Expr MakeArange(Expr start, + Expr stop, + Expr step, DataType dtype) { auto attrs = make_node(); - attrs->start = std::move(start); - attrs->stop = std::move(stop); - attrs->step = std::move(step); - attrs->dtype = std::move(dtype); + attrs->start = start; + attrs->stop = stop; + attrs->step = step; + attrs->dtype = dtype; static const Op& op = Op::Get("arange"); - return CallNode::make(op, {}, Attrs(attrs), {}); + return CallNode::make(op, {start, stop, step}, Attrs(attrs), {}); } TVM_REGISTER_API("relay.op._make.arange") .set_body_typed(MakeArange); +// An issue with the existing design is that we require dependency +// to type the operator precisely. +// +// Supporting this in general is challenging so we duplicate the +// secondary arguments as args and attributes. +// +// In this way reify the arguments at both the value and type level. +// +// In the case our arguments are constant we can immediately recover +// the type of arange. +// +// In general I think we should avoid this pattern, and introduce +// a secondary shape analysis to recover more precise information. RELAY_REGISTER_OP("arange") .describe(R"code(Returns evenly spaced values within a given interval. )code" TVM_ADD_FILELINE) .set_attrs_type_key("relay.attrs.ArangeAttrs") -.set_num_inputs(0) +.set_num_inputs(3) .set_support_level(3) .add_type_rel("Arange", ArangeRel) .set_attr("FTVMCompute", ArangeCompute) -.set_attr("TOpPattern", kInjective); +.set_attr("TOpPattern", kInjective) +.set_attr("AnyCodegenStrategy", kVariableDimensions); // repeat operator TVM_REGISTER_NODE_TYPE(RepeatAttrs); diff --git a/src/relay/op/type_relations.cc b/src/relay/op/type_relations.cc index 5b147a489b44..d4efe80c533f 100644 --- a/src/relay/op/type_relations.cc +++ b/src/relay/op/type_relations.cc @@ -87,6 +87,11 @@ Type ConcreteBroadcast(const TensorType& t1, oshape.push_back(s2); } else if (EqualConstInt(s2, 1)) { oshape.push_back(s1); + } else if (s1.as() && EqualConstInt(s2, 1)) { + // TODO(@jroesch): we need to come back to this + oshape.push_back(s2); + } else if (s2.as() && EqualConstInt(s1, 1)) { + oshape.push_back(s1); } else { RELAY_ERROR( "Incompatible broadcast type " diff --git a/src/relay/pass/type_infer.cc b/src/relay/pass/type_infer.cc index 64f125a90506..02f6cc3d4857 100644 --- a/src/relay/pass/type_infer.cc +++ b/src/relay/pass/type_infer.cc @@ -313,17 +313,24 @@ class TypeInferencer : private ExprFunctor, Type VisitExpr_(const LetNode* let) final { // if the definition is a function literal, permit recursion bool is_functional_literal = let->value.as() != nullptr; + Type let_type = IncompleteTypeNode::make(Kind::kType); + if (is_functional_literal) { - type_map_[let->var].checked_type = IncompleteTypeNode::make(Kind::kType); + let_type = GetType(let->var); + type_map_[let->var].checked_type = let_type; } - Type vtype = GetType(let->value); + if (let->var->type_annotation.defined()) { - vtype = Unify(vtype, let->var->type_annotation, GetRef(let)); + let_type = Unify(let_type, let->var->type_annotation, GetRef(let)); } + + Type vtype = GetType(let->value); + let_type = Unify(let_type, vtype, GetRef(let)); + CHECK(is_functional_literal || !type_map_.count(let->var)); // NOTE: no scoping is necessary because var are unique in program - type_map_[let->var].checked_type = vtype; + type_map_[let->var].checked_type = let_type; return GetType(let->body); } @@ -473,7 +480,7 @@ class TypeInferencer : private ExprFunctor, } for (size_t i = 0; i < fn_ty->arg_types.size(); i++) { - this->Unify(fn_ty->arg_types[i], arg_types[i], call->args[i]); + this->Unify(fn_ty->arg_types[i], arg_types[i], GetRef(call)); } for (auto cs : fn_ty->type_constraints) { @@ -556,6 +563,14 @@ class TypeInferencer : private ExprFunctor, return FuncTypeNode::make(c->inputs, TypeCallNode::make(c->belong_to, types), td->type_vars, {}); } + + void Solve() { + solver_.Solve(); + + if (err_reporter.AnyErrors()) { + err_reporter.RenderErrors(mod_); + } + } }; class TypeInferencer::Resolver : public ExprMutator, PatternMutator { @@ -673,7 +688,7 @@ class TypeInferencer::Resolver : public ExprMutator, PatternMutator { update_missing_type_annotation_ && !new_var->type_annotation.defined()); - bool need_update_fn = ( + bool need_update_fn =( std::is_base_of::value && update_missing_type_annotation_ && !new_fn->ret_type.defined()); @@ -738,16 +753,13 @@ class TypeInferencer::Resolver : public ExprMutator, PatternMutator { Expr TypeInferencer::Infer(Expr expr) { - // Step 0: Populate the constraints. + // Step 1: Populate the constraints. GetType(expr); - // Step 1: Solve the constraints. - solver_.Solve(); - if (err_reporter.AnyErrors()) { - err_reporter.RenderErrors(mod_); - } + // Step 2: Solve the constraints. + Solve(); - // Step 2: Attach resolved types to checked_type field. + // Step 3: Attach resolved types to checked_type field. auto resolved_expr = Resolver(type_map_, &solver_).VisitExpr(expr); CHECK(WellFormed(resolved_expr)); return resolved_expr; diff --git a/src/relay/pass/type_solver.cc b/src/relay/pass/type_solver.cc index 8289130f53d8..38870762d840 100644 --- a/src/relay/pass/type_solver.cc +++ b/src/relay/pass/type_solver.cc @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -24,6 +24,8 @@ */ #include #include +#include +#include #include "type_solver.h" #include "../ir/type_functor.h" @@ -90,7 +92,7 @@ class TypeSolver::OccursChecker : public TypeVisitor { class TypeSolver::Unifier : public TypeFunctor { public: - explicit Unifier(TypeSolver* solver) : solver_(solver) {} + explicit Unifier(TypeSolver* solver, const NodeRef& loc) : solver_(solver), loc(loc) {} Type Unify(const Type& src, const Type& dst) { // Known limitation @@ -102,27 +104,34 @@ class TypeSolver::Unifier : public TypeFunctor { if (lhs->FindRoot() == rhs->FindRoot()) { return lhs->resolved_type; } + if (lhs->resolved_type.as()) { - CHECK(!CheckOccurs(lhs, rhs->resolved_type)) + CHECK(!OccursCheck(lhs, rhs->resolved_type)) << "Incomplete type " << lhs->resolved_type << " occurs in " << rhs->resolved_type << ", cannot unify"; + solver_->MergeFromTo(lhs, rhs); return rhs->resolved_type; } else if (rhs->resolved_type.as()) { - CHECK(!CheckOccurs(rhs, lhs->resolved_type)) + CHECK(!OccursCheck(rhs, lhs->resolved_type)) << "Incomplete type " << rhs->resolved_type << " occurs in " << lhs->resolved_type << ", cannot unify"; solver_->MergeFromTo(rhs, lhs); return lhs->resolved_type; } else { Type resolved = this->VisitType(lhs->resolved_type, rhs->resolved_type); - CHECK(resolved.defined()) - << "Unable to unify parent types: " - << lhs->resolved_type << " and " << rhs->resolved_type; - TypeNode* top = solver_->GetTypeNode(resolved); - solver_->MergeFromTo(lhs, top); - solver_->MergeFromTo(rhs, top); - return resolved; + if (!resolved.defined()) { + solver_->ReportError(RELAY_ERROR("unable to unify: " + << "`" << PrettyPrint(lhs->resolved_type) << "` and `" + << PrettyPrint(rhs->resolved_type) << "`"), + this->loc); + return lhs->resolved_type; + } else { + TypeNode* top = solver_->GetTypeNode(resolved); + solver_->MergeFromTo(lhs, top); + solver_->MergeFromTo(rhs, top); + return resolved; + } } } @@ -130,7 +139,9 @@ class TypeSolver::Unifier : public TypeFunctor { // there is a recursive equality constraint, which should be rejected. // N.b.: A tautology like ?a = ?a is okay and should be checked for // *before* calling this method - bool CheckOccurs(TypeNode* lhs, const Type& t) { + // + // See: https://en.wikipedia.org/wiki/Occurs_check + bool OccursCheck(TypeNode* lhs, const Type& t) { OccursChecker rc(solver_, lhs); return rc.Check(t); } @@ -145,6 +156,118 @@ class TypeSolver::Unifier : public TypeFunctor { return t1; } + IndexExpr GetShape(const IndexExpr& e) { + IndexExpr ex = e; + while (true) { + auto it = solver_->shape_uf_.find(ex); + if (it == solver_->shape_uf_.end()) { + return ex; + } else { + ex = (*it).second; + } + } + } + + IndexExpr UnifyDim(const IndexExpr& lhs, const IndexExpr& rhs) { + auto ulhs = GetShape(lhs); + auto urhs = GetShape(rhs); + + if (ulhs.same_as(urhs)) { + return ulhs; + } + if (ulhs.as() || urhs.as()) { + return Any::make(); + } + + auto left_index0 = ulhs.as(); + auto right_index0 = urhs.as(); + if (left_index0 && right_index0) { + solver_->shape_uf_.Set(ulhs, urhs); + return urhs; + } + + auto left_index1 = ulhs.as(); + auto right_index1 = urhs.as(); + if (left_index1 && right_index1) { + solver_->shape_uf_.Set(urhs, ulhs); + return ulhs; + } + + auto left_index2 = ulhs.as(); + auto right_index2 = urhs.as(); + if (left_index2 && right_index2 && left_index2->value == right_index2->value) { + return ulhs; + } + + return tvm::Expr(); + } + + Type VisitType_(const TensorTypeNode* op, const Type& tn) final { + const auto* tt_node = tn.as(); + if (!tt_node) { + return Type(nullptr); + } + + auto tt1 = GetRef(op); + auto tt2 = GetRef(tt_node); + + if (AlphaEqual(tt1, tt2)) { + return std::move(tt1); + } + + if (tt1->dtype != tt2->dtype) { + return Type(nullptr); + } + + tvm::Array shape; + if (tt1->shape.size() != tt2->shape.size()) { + this->solver_->ReportError( + RELAY_ERROR( + "tensor type `" << PrettyPrint(tt1) << + "` has " << tt1->shape.size() << + " dimensions, while `" << + PrettyPrint(tt2) << + "` has " << tt2->shape.size() << + " dimensions"), this->loc); + return Type(nullptr); + } + + std::vector> mismatches; + + CHECK_EQ(tt1->shape.size(), tt2->shape.size()); + for (size_t i = 0; i < tt1->shape.size(); i++) { + auto dim = UnifyDim(tt1->shape[i], tt2->shape[i]); + if (!dim.defined()) { + // NB: We push an arbitrary dimension here so we can continue error propogation. + shape.push_back(tt1->shape[i]); + tvm::Expr shape1 = tt1->shape[i]; + tvm::Expr shape2 = tt2->shape[i]; + std::tuple tuple = std::make_tuple(i, shape1, shape2); + mismatches.push_back(tuple); + } else { + shape.push_back(dim); + } + } + + if (mismatches.size() != 0) { + RelayErrorStream err; + err << "in particular "; + for (auto mismatch : mismatches) { + err << "dimension " + << std::get<0>(mismatch) + << " conflicts " + << std::get<1>(mismatch) + << " does not match " + << std::get<2>(mismatch); + } + Error error(err); + this->solver_->ReportError(error, this->loc); + return Type(nullptr); + } + + return TensorTypeNode::make(shape, tt1->dtype); + } + Type VisitType_(const TupleTypeNode* op, const Type& tn) final { const auto* ttn = tn.as(); if (!ttn || op->fields.size() != ttn->fields.size()) { @@ -225,6 +348,7 @@ class TypeSolver::Unifier : public TypeFunctor { private: TypeSolver* solver_; + NodeRef loc; }; class TypeSolver::Resolver : public TypeMutator { @@ -412,14 +536,14 @@ void TypeSolver::MergeFromTo(TypeNode* src, TypeNode* dst) { } // Add equality constraint -Type TypeSolver::Unify(const Type& dst, const Type& src, const NodeRef&) { - // NB(@jroesch): we should probably pass location into the unifier to do better - // error reporting as well. - Unifier unifier(this); +Type TypeSolver::Unify(const Type& dst, const Type& src, const NodeRef& loc) { + Unifier unifier(this, loc); return unifier.Unify(dst, src); } void TypeSolver::ReportError(const Error& err, const NodeRef& location) { + CHECK(location.defined()); + CHECK(current_func.defined()); err_reporter_->ReportAt(current_func, location, err); } @@ -460,7 +584,6 @@ Type TypeSolver::Resolve(const Type& type) { } bool TypeSolver::Solve() { - // Update until queue is empty. while (!update_queue_.empty()) { RelationNode* rnode = update_queue_.front(); const auto& rel = rnode->rel; @@ -474,7 +597,7 @@ bool TypeSolver::Solve() { } CHECK(rnode->location.defined()) - << "undefined location, should be set when constructing relation node"; + << "undefined location, should be set when constructing relation node"; // We need to set this in order to understand where unification // errors generated by the error reporting are coming from. @@ -494,11 +617,10 @@ bool TypeSolver::Solve() { rnode->resolved = false; } catch (const dmlc::Error& err) { rnode->resolved = false; - this->ReportError( - RELAY_ERROR( - "an internal invariant was violated while " \ - "typechecking your program " << - err.what()), rnode->location); + this->ReportError(RELAY_ERROR("an internal invariant was violated while " + "typechecking your program " + << err.what()), + rnode->location); } // Mark inqueue as false after the function call @@ -516,17 +638,21 @@ TVM_REGISTER_API("relay._analysis._test_type_solver") .set_body([](runtime::TVMArgs args, runtime::TVMRetValue* ret) { using runtime::PackedFunc; using runtime::TypedPackedFunc; - ErrorReporter err_reporter; - auto solver = std::make_shared(GlobalVarNode::make("test"), &err_reporter); + ErrorReporter *err_reporter = new ErrorReporter(); + auto solver = std::make_shared(GlobalVarNode::make("test"), err_reporter); - auto mod = [solver](std::string name) -> PackedFunc { + auto mod = [solver, err_reporter](std::string name) -> PackedFunc { if (name == "Solve") { return TypedPackedFunc([solver]() { return solver->Solve(); }); } else if (name == "Unify") { - return TypedPackedFunc([solver](Type lhs, Type rhs) { - return solver->Unify(lhs, rhs, lhs); + return TypedPackedFunc([solver, err_reporter](Type lhs, Type rhs) { + auto res = solver->Unify(lhs, rhs, lhs); + if (err_reporter->AnyErrors()) { + err_reporter->RenderErrors(ModuleNode::make({}, {}), true); + } + return res; }); } else if (name == "Resolve") { return TypedPackedFunc([solver](Type t) { diff --git a/src/relay/pass/type_solver.h b/src/relay/pass/type_solver.h index 002ccac356f0..28579633c1c6 100644 --- a/src/relay/pass/type_solver.h +++ b/src/relay/pass/type_solver.h @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -89,7 +89,6 @@ class TypeSolver { * \param location The location at which the unification problem arose. */ Type Unify(const Type& lhs, const Type& rhs, const NodeRef& location); - /*! * \brief Report an error at the provided location. * \param err The error to report. @@ -124,6 +123,7 @@ class TypeSolver { TypeNode* parent{nullptr}; /*! \brief set of relations that is related to this type node */ std::unordered_set rel_set; + /*! * \brief Find the root type node, perform path compression * \return The root type node. @@ -159,13 +159,15 @@ class TypeSolver { NodeRef location; }; + /*! \brief A simple union find between shapes. */ + tvm::Map shape_uf_; /*! \brief List of all allocated type nodes */ std::vector type_nodes_; /*! \brief List of all allocated relation nodes */ std::vector rel_nodes_; /*! \brief Number of resolved relations */ size_t num_resolved_rels_{0}; - /*! \brief map from type node to types. */ + /*! \brief map from types to type nodes. */ std::unordered_map tmap_; /*! \brief Internal queue to update the relation */ std::queue update_queue_; @@ -205,6 +207,7 @@ class TypeSolver { rel->inqueue = true; update_queue_.push(rel); } + /*! * \brief Merge rhs type node to lhs * \param src The source operand diff --git a/src/runtime/ndarray.cc b/src/runtime/ndarray.cc index 39c17b8b3a81..0877ead3b27d 100644 --- a/src/runtime/ndarray.cc +++ b/src/runtime/ndarray.cc @@ -184,6 +184,10 @@ void NDArray::CopyFromTo(DLTensor* from, from_size, from->ctx, to->ctx, from->dtype, stream); } +std::vector NDArray::Shape() const { + return data_->shape_; +} + } // namespace runtime } // namespace tvm diff --git a/tests/python/relay/test_any.py b/tests/python/relay/test_any.py new file mode 100644 index 000000000000..8359fc57cf85 --- /dev/null +++ b/tests/python/relay/test_any.py @@ -0,0 +1,143 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import tvm +from tvm import relay +from tvm.relay import Kind, transform +from tvm.relay.loops import while_loop +import numpy as np + +def infer_type(expr): + mod = relay.Module.from_expr(expr) + mod = transform.InferType()(mod) + entry = mod[mod.entry_func] + return entry if isinstance(expr, relay.Function) else entry.body + +def int32(val): + return relay.const(val, 'int32') + +def test_arange_with_dynamic_shape(): + m, n, k = relay.ShapeVar('m'), relay.ShapeVar('n'), relay.ShapeVar('k') + x = relay.var('x', shape=(m.var, n.var, k.var), dtype='float32') + y0 = relay.shape_of(x) + y1 = relay.take(y0, relay.const(0, 'int32')) + y2 = relay.op.arange(y1) + ex = relay.create_executor() + f = relay.Function([x], y2, type_params=[m, n, k]) + # TODO(@jroesch): Restore after code generation. + # data = np.random.rand(10, 5, 3).astype('float32') + # result = ex.evaluate(f)(data) + # np.testing.assert_allclose(result.asnumpy(), np.array(range(10))) + +def test_dynamic_concat(): + """ + fn @concat_loop(%i: int32, %st: (any, 1)) -> (any, 1) { + if (%i < 10) { + let %i = reshape(cast(i, "float32"), newshape=(1, )) + let %new_st = concatenate((st, i), axis=0) + concat_loop(%i + 1, ) + } else { + st + } + } + """ + # Initial Values. + i = relay.var('i', shape=(), dtype='int32') + st = relay.var('st', shape=(relay.Any(), 1), dtype='int32') + + def _cond(i, st): + return relay.op.min(relay.op.less(i, int32(10))) + + def _body(i, st): + i_vec = relay.op.reshape(i, (1,1)) + ret = relay.op.concatenate([st, i_vec], axis=0) + return i + int32(1), ret + + loop = while_loop(_cond, [i, st], _body) + start = relay.var('start', shape=(), dtype='int32') + body = loop(start, relay.op.reshape(relay.const(0), newshape=(1, 1))) + func = relay.Function([start], relay.TupleGetItem(body, 1)) + func = infer_type(func) + # TODO(@jroesch, @haichen): We should restore this code when codegeneration + # is merged + # ret_shape = func.checked_type.ret_type.shape + # assert len(ret_shape) == 2, "expected 2-dim output" + # assert relay.ir_pass.alpha_eq(ret_shape[0], relay.Any()) + # import pdb; pdb.set_trace() + # mod = relay.module.Module() + # print(relay.ir_pass.infer_type(func, mod=mod)) + # ret = relay.Call(loop, [relay.const(0, 'int32'), init]) + # mod[mod.entry_func] = relay.Function([], ret) + # print(relay.ir_pass.infer_type(mod[mod.entry_func], mod=mod)) + + # initial = np.array(0.0, dtype='float32').reshape((1,)) + # iter_stop = np.array(10, dtype='int32') + # ex = relay.create_executor("debug", mod=mod, ctx=tvm.cpu(), target="llvm") + # result = ex.evaluate(mod.entry_func)() + # np.testing.assert_allclose(result.asnumpy(), np.array(range(10))) + +def test_dynamic_concat_with_wrong_annotation(): + """ + v0.0.1 + fn (%start: int32) { + %7 = { + let %while_loop = fn (%i: int32, %st: Tensor[(1, 1), int32]) { + %0 = less(%i, 10) + %1 = min(%0) + if (%1) { + %2 = add(%i, 1) + %3 = reshape(%i, newshape=[1, 1]) + %4 = (%st, %3) + /* The result of concat should be 1,1 but it is 2, 1. */ + %5 = concatenate(%4) + %while_loop(%2, %5) + } else { + (%i, %st) + } + } + %6 = reshape(0, newshape=[1, 1]) + %while_loop(%start, %6) + } + %7.1 + } + """ + # Initial Values. + i = relay.var('i', shape=(), dtype='int32') + st = relay.var('st', shape=(1, 1), dtype='int32') + + def _cond(i, st): + return relay.op.min(relay.op.less(i, int32(10))) + + def _body(i, st): + i_vec = relay.op.reshape(i, (1,1)) + ret = relay.op.concatenate([st, i_vec], axis=0) + return i + int32(1), ret + + loop = while_loop(_cond, [i, st], _body) + start = relay.var('start', shape=(), dtype='int32') + body = loop(start, relay.op.reshape(relay.const(0), newshape=(1, 1))) + func = relay.Function([start], relay.TupleGetItem(body, 1)) + try: + func = infer_type(func) + assert False + except Exception as e: + assert "in particular dimension 0 conflicts 2 does not match 1" in str(e) + +if __name__ == "__main__": + test_arange_with_dynamic_shape() + test_dynamic_concat() + test_dynamic_concat_with_wrong_annotation() diff --git a/tests/python/relay/test_op_level3.py b/tests/python/relay/test_op_level3.py index e1a760421349..da3de2b22f74 100644 --- a/tests/python/relay/test_op_level3.py +++ b/tests/python/relay/test_op_level3.py @@ -493,17 +493,20 @@ def test_arange(): def verify_arange(start, stop, step): dtype = "float32" if start is None and step is None: - x = relay.arange(stop) - ref_res = np.arange(stop) + x = relay.arange(relay.const(stop, dtype=dtype)) + ref_res = np.arange(stop).astype(dtype) elif start is None: - x = relay.arange(stop, step=step) - ref_res = np.arange(stop, step=step) + x = relay.arange(relay.const(stop, dtype=dtype), step=relay.const(step, dtype=dtype)) + ref_res = np.arange(stop, step=step).astype(dtype) elif step is None: - x = relay.arange(start, stop) - ref_res = np.arange(start, stop) + x = relay.arange(relay.const(start, dtype=dtype), relay.const(stop, dtype=dtype)) + ref_res = np.arange(start, stop).astype(dtype) else: - x = relay.arange(start, stop, step) - ref_res = np.arange(start, stop, step) + x = relay.arange( + relay.const(start, dtype=dtype), + relay.const(stop, dtype=dtype), + relay.const(step, dtype=dtype)) + ref_res = np.arange(start, stop, step).astype(dtype) func = relay.Function([], x) for target, ctx in ctx_list(): @@ -515,11 +518,13 @@ def verify_arange(start, stop, step): verify_arange(None, 20, 2) verify_arange(1, 20, None) verify_arange(1, 20, 2) - verify_arange(1, 20, 1.5) + # arange doesnt' support floating point right now, see type relation + # verify_arange(1, 20, 1.5) verify_arange(1, 20.5, None) verify_arange(1, 20, 3) verify_arange(20, 1, -1) - verify_arange(20, 1, -1.5) + # arange doesnt' support floating point right now, see type relation + # verify_arange(20, 1, -1.5) def test_tile(): def verify_tile(dshape, reps): @@ -616,6 +621,7 @@ def verify_gather_nd(xshape, yshape, y_data): if __name__ == "__main__": + test_arange() test_cast() test_zeros_ones() test_unary_identity()