diff --git a/python/tvm/relay/op/strategy/cuda.py b/python/tvm/relay/op/strategy/cuda.py index e0091a18de72..a1c88b8630f4 100644 --- a/python/tvm/relay/op/strategy/cuda.py +++ b/python/tvm/relay/op/strategy/cuda.py @@ -190,7 +190,7 @@ def conv2d_strategy_cuda(attrs, inputs, out_type, target): has_groups=True), wrap_topi_schedule(topi.cuda.schedule_conv2d_cudnn), name="conv2d_cudnn.cuda", - plevel=15) + plevel=25) elif is_depthwise_conv2d(data.shape, layout, kernel.shape, kernel_layout, groups): if layout == "NCHW": assert kernel_layout == "OIHW" @@ -218,7 +218,7 @@ def conv2d_strategy_cuda(attrs, inputs, out_type, target): has_groups=True), wrap_topi_schedule(topi.cuda.schedule_conv2d_cudnn), name="conv2d_cudnn.cuda", - plevel=15) + plevel=25) cudnn_impl = True if layout == 'NCHW': @@ -377,7 +377,7 @@ def conv3d_strategy_cuda(attrs, inputs, out_type, target): strategy.add_implementation(wrap_compute_conv3d(topi.cuda.conv3d_cudnn, True), wrap_topi_schedule(topi.cuda.schedule_conv3d_cudnn), name="conv3d_cudnn.cuda", - plevel=15) + plevel=25) return strategy @conv3d_winograd_without_weight_transfrom_strategy.register(["cuda", "gpu"]) @@ -473,7 +473,7 @@ def dense_strategy_cuda(attrs, inputs, out_type, target): wrap_compute_dense(topi.cuda.dense_cublas), wrap_topi_schedule(topi.cuda.schedule_dense_cublas), name="dense_cublas.cuda", - plevel=15) + plevel=25) return strategy @batch_matmul_strategy.register(["cuda", "gpu"])