From 66d89e76cbe95155026a74dfea032d648b042a15 Mon Sep 17 00:00:00 2001 From: Yuchen Jin Date: Thu, 13 May 2021 06:11:40 -0700 Subject: [PATCH] Rename gpu to cuda, and bump dlpack to v0.5 (#8032) --- 3rdparty/dlpack | 2 +- .../broadcast/test_broadcast_map.py | 10 ++--- apps/topi_recipe/reduce/test_reduce_map.py | 4 +- apps/topi_recipe/rnn/lstm.py | 2 +- apps/topi_recipe/rnn/matexp.py | 10 ++--- docs/deploy/tensorrt.rst | 2 +- docs/dev/index.rst | 6 +-- golang/src/device.go | 20 ++++----- include/tvm/runtime/device_api.h | 8 ++-- python/tvm/__init__.py | 2 +- python/tvm/_ffi/runtime_ctypes.py | 3 +- python/tvm/contrib/nvcc.py | 8 ++-- python/tvm/runtime/__init__.py | 2 +- python/tvm/runtime/ndarray.py | 27 ++++++++++-- python/tvm/testing.py | 10 ++--- python/tvm/topi/cuda/conv2d_alter_op.py | 2 +- python/tvm/topi/cuda/nms.py | 2 +- rust/tvm-sys/src/device.rs | 8 ++-- rust/tvm-sys/src/value.rs | 2 +- src/auto_scheduler/search_policy/utils.h | 4 +- src/auto_scheduler/search_task.cc | 6 +-- src/contrib/tf_op/tvm_dso_op_kernels.cc | 6 +-- src/relay/backend/build_module.cc | 2 +- src/relay/backend/vm/compiler.cc | 2 +- src/runtime/contrib/cudnn/cudnn_utils.cc | 2 +- .../contrib/tensorrt/tensorrt_builder.cc | 4 +- .../contrib/tensorrt/tensorrt_runtime.cc | 6 +-- src/runtime/cuda/cuda_device_api.cc | 20 ++++----- src/runtime/module.cc | 2 +- src/runtime/ndarray.cc | 4 +- src/target/target_kind.cc | 6 +-- ...hedule_postproc_rewrite_for_tensor_core.cc | 2 +- src/tir/analysis/verify_memory.cc | 2 +- tests/cpp/build_module_test.cc | 2 +- .../test_runtime_packed_func.py | 4 +- tests/python/contrib/test_cublas.py | 6 +-- tests/python/contrib/test_cudnn.py | 10 ++--- tests/python/contrib/test_tensorrt.py | 20 ++++----- tests/python/frontend/pytorch/test_forward.py | 2 +- .../test_quantization_accuracy.py | 2 +- tests/python/relay/test_any.py | 4 +- .../relay/test_auto_scheduler_tuning.py | 2 +- tests/python/relay/test_cpp_build_module.py | 2 +- tests/python/relay/test_op_level1.py | 10 ++--- .../relay/test_pass_context_analysis.py | 42 +++++++++--------- tests/python/topi/python/test_topi_relu.py | 2 +- tests/python/topi/python/test_topi_tensor.py | 2 +- .../unittest/test_runtime_graph_cuda_graph.py | 2 +- .../test_runtime_module_based_interface.py | 8 ++-- .../unittest/test_target_codegen_blob.py | 4 +- .../unittest/test_target_codegen_cuda.py | 44 +++++++++---------- .../unittest/test_target_codegen_llvm.py | 2 +- ...hedule_postproc_rewrite_for_tensor_core.py | 4 +- .../unittest/test_te_schedule_tensor_core.py | 4 +- .../test_tir_transform_lower_warp_memory.py | 12 ++--- .../auto_scheduler/tune_conv2d_layer_cuda.py | 2 +- tutorials/autotvm/tune_conv2d_cuda.py | 2 +- tutorials/frontend/deploy_sparse.py | 2 +- tutorials/frontend/from_caffe2.py | 2 +- tutorials/frontend/from_keras.py | 2 +- tutorials/frontend/from_mxnet.py | 2 +- tutorials/frontend/from_tensorflow.py | 2 +- tutorials/get_started/relay_quick_start.py | 2 +- tutorials/language/reduction.py | 2 +- tutorials/language/scan.py | 2 +- tutorials/optimize/opt_conv_cuda.py | 2 +- tutorials/optimize/opt_conv_tensorcore.py | 2 +- tutorials/topi/intro_topi.py | 2 +- 68 files changed, 217 insertions(+), 197 deletions(-) diff --git a/3rdparty/dlpack b/3rdparty/dlpack index a07f962d446b..ddeb264880a1 160000 --- a/3rdparty/dlpack +++ b/3rdparty/dlpack @@ -1 +1 @@ -Subproject commit a07f962d446b577adf4baef2b347a0f3a2a20617 +Subproject commit ddeb264880a1fa7e7be238ab3901a810324fbe5f diff --git a/apps/topi_recipe/broadcast/test_broadcast_map.py b/apps/topi_recipe/broadcast/test_broadcast_map.py index e7b5c3a712a8..43a44afa785b 100644 --- a/apps/topi_recipe/broadcast/test_broadcast_map.py +++ b/apps/topi_recipe/broadcast/test_broadcast_map.py @@ -65,8 +65,8 @@ def test_broadcast_to(in_shape, out_shape): data_npy = np.random.uniform(size=in_shape).astype(A.dtype) out_npy = np.broadcast_to(data_npy, out_shape) - data_nd = tvm.nd.array(data_npy, tvm.gpu()) - out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), tvm.gpu()) + data_nd = tvm.nd.array(data_npy, tvm.cuda()) + out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), tvm.cuda()) for _ in range(2): fcuda(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) @@ -116,9 +116,9 @@ def test_broadcast_binary_op(lhs_shape, rhs_shape, typ="add"): out_npy = np.maximum(lhs_npy, rhs_npy) elif typ == "minimum": out_npy = np.minimum(lhs_npy, rhs_npy) - lhs_nd = tvm.nd.array(lhs_npy, tvm.gpu()) - rhs_nd = tvm.nd.array(rhs_npy, tvm.gpu()) - out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(B.dtype), tvm.gpu()) + lhs_nd = tvm.nd.array(lhs_npy, tvm.cuda()) + rhs_nd = tvm.nd.array(rhs_npy, tvm.cuda()) + out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(B.dtype), tvm.cuda()) for _ in range(2): fcuda(lhs_nd, rhs_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) diff --git a/apps/topi_recipe/reduce/test_reduce_map.py b/apps/topi_recipe/reduce/test_reduce_map.py index 0a78e5bedb58..71ceb8f0cd07 100644 --- a/apps/topi_recipe/reduce/test_reduce_map.py +++ b/apps/topi_recipe/reduce/test_reduce_map.py @@ -78,8 +78,8 @@ def test_reduce_map(in_shape, axis, keepdims, type="sum", test_id=0): else: raise NotImplementedError - data_tvm = tvm.nd.array(in_npy, device=tvm.gpu()) - out_tvm = tvm.nd.empty(shape=out_npy.shape, device=tvm.gpu()) + data_tvm = tvm.nd.array(in_npy, device=tvm.cuda()) + out_tvm = tvm.nd.empty(shape=out_npy.shape, device=tvm.cuda()) for _ in range(2): fcuda(data_tvm, out_tvm) diff --git a/apps/topi_recipe/rnn/lstm.py b/apps/topi_recipe/rnn/lstm.py index e4b7fbade387..cd45bff92ef4 100644 --- a/apps/topi_recipe/rnn/lstm.py +++ b/apps/topi_recipe/rnn/lstm.py @@ -171,7 +171,7 @@ def lstm(): def check_device(target): num_step = n_num_step flstm = tvm.build(s, [Xi2h, Wh2h, scan_h, scan_c], target) - dev = tvm.gpu(0) if target == "cuda" else tvm.cl(0) + dev = tvm.cuda(0) if target == "cuda" else tvm.cl(0) # launch the kernel. scan_h_np = np.zeros((num_step, batch_size, num_hidden)).astype("float32") scan_c_np = np.zeros((num_step, batch_size, num_hidden)).astype("float32") diff --git a/apps/topi_recipe/rnn/matexp.py b/apps/topi_recipe/rnn/matexp.py index ecf868cb5646..85e0d617eb07 100644 --- a/apps/topi_recipe/rnn/matexp.py +++ b/apps/topi_recipe/rnn/matexp.py @@ -140,7 +140,7 @@ def check_device(target): } ): f = tvm.build(s, [s_scan, Whh], target) - dev = tvm.gpu(0) if target == "cuda" else tvm.cl(0) + dev = tvm.cuda(0) if target == "cuda" else tvm.cl(0) # launch the kernel. res_np = np.zeros((n_num_step, n_batch_size, n_num_hidden)).astype("float32") Whh_np = np.zeros((n_num_hidden, n_num_hidden)).astype("float32") @@ -160,16 +160,16 @@ def check_device(target): print("Time cost=%g" % tgap) # correctness if not SKIP_CHECK: - res_gpu = res_a.asnumpy() + res_cuda = res_a.asnumpy() res_cmp = np.ones_like(res_np).astype("float64") Whh_np = Whh_np.astype("float64") for t in range(1, n_num_step): res_cmp[t][:] = np.dot(res_cmp[t - 1], Whh_np) for i in range(n_num_step): for j in range(n_num_hidden): - if abs(res_cmp[i, 0, j] - res_gpu[i, 0, j]) > 1e-5: - print("%d, %d: %g vs %g" % (i, j, res_cmp[i, 0, j], res_gpu[i, 0, j])) - tvm.testing.assert_allclose(res_gpu, res_cmp, rtol=1e-3) + if abs(res_cmp[i, 0, j] - res_cuda[i, 0, j]) > 1e-5: + print("%d, %d: %g vs %g" % (i, j, res_cmp[i, 0, j], res_cuda[i, 0, j])) + tvm.testing.assert_allclose(res_cuda, res_cmp, rtol=1e-3) check_device("cuda") diff --git a/docs/deploy/tensorrt.rst b/docs/deploy/tensorrt.rst index 08addeb04eeb..a39d9c8edea7 100644 --- a/docs/deploy/tensorrt.rst +++ b/docs/deploy/tensorrt.rst @@ -124,7 +124,7 @@ have to be built. .. code:: python - dev = tvm.gpu(0) + dev = tvm.cuda(0) loaded_lib = tvm.runtime.load_module('compiled.so') gen_module = tvm.contrib.graph_executor.GraphModule(loaded_lib['default'](dev)) input_data = np.random.uniform(0, 1, input_shape).astype(dtype) diff --git a/docs/dev/index.rst b/docs/dev/index.rst index ed0f1a1aadb8..5189ffddf1ee 100644 --- a/docs/dev/index.rst +++ b/docs/dev/index.rst @@ -144,7 +144,7 @@ The main goal of TVM's runtime is to provide a minimal API for loading and execu import tvm # Example runtime execution program in python, with type annotated mod: tvm.runtime.Module = tvm.runtime.load_module("compiled_artifact.so") - arr: tvm.runtime.NDArray = tvm.nd.array([1, 2, 3], device=tvm.gpu(0)) + arr: tvm.runtime.NDArray = tvm.nd.array([1, 2, 3], device=tvm.cuda(0)) fun: tvm.runtime.PackedFunc = mod["addone"] fun(a) print(a.asnumpy()) @@ -164,8 +164,8 @@ The above example only deals with a simple `addone` function. The code snippet b import tvm # Example runtime execution program in python, with types annotated factory: tvm.runtime.Module = tvm.runtime.load_module("resnet18.so") - # Create a stateful graph execution module for resnet18 on gpu(0) - gmod: tvm.runtime.Module = factory["resnet18"](tvm.gpu(0)) + # Create a stateful graph execution module for resnet18 on cuda(0) + gmod: tvm.runtime.Module = factory["resnet18"](tvm.cuda(0)) data: tvm.runtime.NDArray = get_input_data() # set input gmod["set_input"](0, data) diff --git a/golang/src/device.go b/golang/src/device.go index 6569e44bf1ef..b2203a38d86d 100644 --- a/golang/src/device.go +++ b/golang/src/device.go @@ -29,10 +29,10 @@ import "C" // KDLCPU is golang enum correspond to TVM device type kDLCPU. var KDLCPU = int32(C.kDLCPU) -// KDLGPU is golang enum correspond to TVM device type kDLGPU. -var KDLGPU = int32(C.kDLGPU) -// KDLCPUPinned is golang enum correspond to TVM device type kDLCPUPinned. -var KDLCPUPinned = int32(C.kDLCPUPinned) +// kDLCUDA is golang enum correspond to TVM device type kDLCUDA. +var kDLCUDA = int32(C.kDLCUDA) +// kDLCUDAHost is golang enum correspond to TVM device type kDLCUDAHost. +var kDLCUDAHost = int32(C.kDLCUDAHost) // KDLOpenCL is golang enum correspond to TVM device type kDLOpenCL. var KDLOpenCL = int32(C.kDLOpenCL) // KDLMetal is golang enum correspond to TVM device type kDLMetal. @@ -61,14 +61,14 @@ func CPU(index int32) Device { return Device{KDLCPU, index} } -// GPU returns the Device object for GPU target on given index -func GPU(index int32) Device { - return Device{KDLGPU, index} +// CUDA returns the Device object for CUDA target on given index +func CUDA(index int32) Device { + return Device{kDLCUDA, index} } -// CPUPinned returns the Device object for CPUPinned target on given index -func CPUPinned(index int32) Device { - return Device{KDLCPUPinned, index} +// CUDAHost returns the Device object for CUDAHost target on given index +func CUDAHost(index int32) Device { + return Device{kDLCUDAHost, index} } // OpenCL returns the Device object for OpenCL target on given index diff --git a/include/tvm/runtime/device_api.h b/include/tvm/runtime/device_api.h index 57bf51d8e094..c3527d87fbf7 100644 --- a/include/tvm/runtime/device_api.h +++ b/include/tvm/runtime/device_api.h @@ -231,10 +231,10 @@ inline const char* DeviceName(int type) { switch (type) { case kDLCPU: return "cpu"; - case kDLGPU: - return "gpu"; - case kDLCPUPinned: - return "cpu_pinned"; + case kDLCUDA: + return "cuda"; + case kDLCUDAHost: + return "cuda_host"; case kDLOpenCL: return "opencl"; case kDLSDAccel: diff --git a/python/tvm/__init__.py b/python/tvm/__init__.py index 4643062ea8e8..0adad82d9bec 100644 --- a/python/tvm/__init__.py +++ b/python/tvm/__init__.py @@ -30,7 +30,7 @@ # top-level alias # tvm.runtime from .runtime.object import Object -from .runtime.ndarray import device, cpu, gpu, opencl, cl, vulkan, metal, mtl +from .runtime.ndarray import device, cpu, cuda, gpu, opencl, cl, vulkan, metal, mtl from .runtime.ndarray import vpi, rocm, ext_dev, micro_dev, hexagon from .runtime import ndarray as nd diff --git a/python/tvm/_ffi/runtime_ctypes.py b/python/tvm/_ffi/runtime_ctypes.py index 3e79801f6266..4eda5e8cc332 100644 --- a/python/tvm/_ffi/runtime_ctypes.py +++ b/python/tvm/_ffi/runtime_ctypes.py @@ -164,7 +164,7 @@ class Device(ctypes.Structure): _fields_ = [("device_type", ctypes.c_int), ("device_id", ctypes.c_int)] MASK2STR = { 1: "cpu", - 2: "gpu", + 2: "cuda", 4: "opencl", 5: "aocl", 6: "sdaccel", @@ -182,7 +182,6 @@ class Device(ctypes.Structure): "stackvm": 1, "cpu": 1, "c": 1, - "gpu": 2, "cuda": 2, "nvptx": 2, "cl": 4, diff --git a/python/tvm/contrib/nvcc.py b/python/tvm/contrib/nvcc.py index 6a7c09860b07..0124d00dda0c 100644 --- a/python/tvm/contrib/nvcc.py +++ b/python/tvm/contrib/nvcc.py @@ -249,8 +249,8 @@ def get_target_compute_version(target=None): return major + "." + minor # 3. GPU - if tvm.gpu(0).exist: - return tvm.gpu(0).compute_version + if tvm.cuda(0).exist: + return tvm.cuda(0).compute_version warnings.warn( "No CUDA architecture was specified or GPU detected." @@ -331,8 +331,8 @@ def have_tensorcore(compute_version=None, target=None): isn't specified. """ if compute_version is None: - if tvm.gpu(0).exist: - compute_version = tvm.gpu(0).compute_version + if tvm.cuda(0).exist: + compute_version = tvm.cuda(0).compute_version else: if target is None or "arch" not in target.attrs: warnings.warn( diff --git a/python/tvm/runtime/__init__.py b/python/tvm/runtime/__init__.py index 54e75ba30d81..265dedb63b57 100644 --- a/python/tvm/runtime/__init__.py +++ b/python/tvm/runtime/__init__.py @@ -26,7 +26,7 @@ # function exposures from .object_generic import convert_to_object, convert, const -from .ndarray import device, cpu, gpu, opencl, cl, vulkan, metal, mtl +from .ndarray import device, cpu, cuda, gpu, opencl, cl, vulkan, metal, mtl from .ndarray import vpi, rocm, ext_dev, micro_dev from .module import load_module, enabled, system_lib from .container import String diff --git a/python/tvm/runtime/ndarray.py b/python/tvm/runtime/ndarray.py index befe077a4dcd..823b1cc4f8b5 100644 --- a/python/tvm/runtime/ndarray.py +++ b/python/tvm/runtime/ndarray.py @@ -17,6 +17,7 @@ # pylint: disable=invalid-name, unused-import, redefined-outer-name """Runtime NDArray API""" import ctypes +import warnings import numpy as np import tvm._ffi @@ -254,8 +255,7 @@ def device(dev_type, dev_id=0): .. code-block:: python assert tvm.device("cpu", 1) == tvm.cpu(1) - assert tvm.device("gpu", 0) == tvm.gpu(0) - assert tvm.device("cuda", 0) == tvm.gpu(0) + assert tvm.device("cuda", 0) == tvm.cuda(0) """ if isinstance(dev_type, string_types): if "-device=micro_dev" in dev_type: @@ -362,9 +362,27 @@ def cpu(dev_id=0): return Device(1, dev_id) +def cuda(dev_id=0): + """Construct a CUDA GPU device + + Parameters + ---------- + dev_id : int, optional + The integer device id + + Returns + ------- + dev : Device + The created device + """ + return Device(2, dev_id) + + def gpu(dev_id=0): - """Construct a GPU device + """Construct a CUDA GPU device + deprecated:: 0.9.0 + Use :py:func:`tvm.cuda` instead. Parameters ---------- dev_id : int, optional @@ -375,6 +393,9 @@ def gpu(dev_id=0): dev : Device The created device """ + warnings.warn( + "Please use tvm.cuda() instead of tvm.gpu(). tvm.gpu() is going to be deprecated in 0.9.0", + ) return Device(2, dev_id) diff --git a/python/tvm/testing.py b/python/tvm/testing.py index edcf4a668697..e4cf62c6377f 100644 --- a/python/tvm/testing.py +++ b/python/tvm/testing.py @@ -464,9 +464,9 @@ def _compose(args, decs): def uses_gpu(*args): - """Mark to differentiate tests that use the GPU is some capacity. + """Mark to differentiate tests that use the GPU in some capacity. - These tests will be run on CPU-only test nodes and on test nodes with GPUS. + These tests will be run on CPU-only test nodes and on test nodes with GPUs. To mark a test that must have a GPU present to run, use :py:func:`tvm.testing.requires_gpu`. @@ -490,7 +490,7 @@ def requires_gpu(*args): Function to mark """ _requires_gpu = [ - pytest.mark.skipif(not tvm.gpu().exist, reason="No GPU present"), + pytest.mark.skipif(not tvm.cuda().exist, reason="No GPU present"), *uses_gpu(), ] return _compose(args, _requires_gpu) @@ -499,7 +499,7 @@ def requires_gpu(*args): def requires_cuda(*args): """Mark a test as requiring the CUDA runtime. - This also marks the test as requiring a gpu. + This also marks the test as requiring a cuda gpu. Parameters ---------- @@ -618,7 +618,7 @@ def requires_tensorcore(*args): _requires_tensorcore = [ pytest.mark.tensorcore, pytest.mark.skipif( - not tvm.gpu().exist or not nvcc.have_tensorcore(tvm.gpu(0).compute_version), + not tvm.cuda().exist or not nvcc.have_tensorcore(tvm.cuda(0).compute_version), reason="No tensorcore present", ), *requires_gpu(), diff --git a/python/tvm/topi/cuda/conv2d_alter_op.py b/python/tvm/topi/cuda/conv2d_alter_op.py index 65bf9d1f178d..067f27262b06 100644 --- a/python/tvm/topi/cuda/conv2d_alter_op.py +++ b/python/tvm/topi/cuda/conv2d_alter_op.py @@ -225,7 +225,7 @@ def _alter_conv2d_layout(attrs, inputs, tinfos, out_type): if topi_tmpl == "conv2d_HWNCnc_tensorcore.cuda": assert data_layout == "HWNC" and kernel_layout == "HWOI" - assert float(tvm.gpu(0).compute_version) >= 7.5 + assert float(tvm.cuda(0).compute_version) >= 7.5 H, W, N, CI = get_const_tuple(data.shape) KH, KW, CO, _ = get_const_tuple(kernel.shape) diff --git a/python/tvm/topi/cuda/nms.py b/python/tvm/topi/cuda/nms.py index f064360768c2..9a3b86d72b18 100644 --- a/python/tvm/topi/cuda/nms.py +++ b/python/tvm/topi/cuda/nms.py @@ -878,7 +878,7 @@ def non_max_suppression( np_valid_count = np.array([4]) s = topi.generic.schedule_nms(out) f = tvm.build(s, [data, valid_count, out], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) tvm_data = tvm.nd.array(np_data, dev) tvm_valid_count = tvm.nd.array(np_valid_count, dev) tvm_out = tvm.nd.array(np.zeros(dshape, dtype=data.dtype), dev) diff --git a/rust/tvm-sys/src/device.rs b/rust/tvm-sys/src/device.rs index 910cc5973408..7b659efb6b44 100644 --- a/rust/tvm-sys/src/device.rs +++ b/rust/tvm-sys/src/device.rs @@ -66,7 +66,7 @@ use thiserror::Error; pub enum DeviceType { CPU = 1, GPU, - CPUPinned, + CUDAHost, OpenCL, Vulkan, Metal, @@ -101,8 +101,8 @@ impl Display for DeviceType { "{}", match self { DeviceType::CPU => "cpu", - DeviceType::GPU => "gpu", - DeviceType::CPUPinned => "cpu_pinned", + DeviceType::GPU => "cuda", + DeviceType::CUDAHost => "cuda_host", DeviceType::OpenCL => "opencl", DeviceType::Vulkan => "vulkan", DeviceType::Metal => "metal", @@ -210,7 +210,7 @@ macro_rules! impl_tvm_device { impl_tvm_device!( DLDeviceType_kDLCPU: [cpu, llvm, stackvm], - DLDeviceType_kDLGPU: [gpu, cuda, nvptx], + DLDeviceType_kDLCUDA: [gpu, cuda, nvptx], DLDeviceType_kDLOpenCL: [cl], DLDeviceType_kDLMetal: [metal], DLDeviceType_kDLVPI: [vpi], diff --git a/rust/tvm-sys/src/value.rs b/rust/tvm-sys/src/value.rs index f939d5177806..1b4f773b851f 100644 --- a/rust/tvm-sys/src/value.rs +++ b/rust/tvm-sys/src/value.rs @@ -86,7 +86,7 @@ macro_rules! impl_tvm_device { impl_tvm_device!( DLDeviceType_kDLCPU: [cpu, llvm, stackvm], - DLDeviceType_kDLGPU: [gpu, cuda, nvptx], + DLDeviceType_kDLCUDA: [gpu, cuda, nvptx], DLDeviceType_kDLOpenCL: [cl], DLDeviceType_kDLMetal: [metal], DLDeviceType_kDLVPI: [vpi], diff --git a/src/auto_scheduler/search_policy/utils.h b/src/auto_scheduler/search_policy/utils.h index eb2cd69c9209..ffd4bf4f486d 100644 --- a/src/auto_scheduler/search_policy/utils.h +++ b/src/auto_scheduler/search_policy/utils.h @@ -53,7 +53,7 @@ inline bool IsCPUTask(const SearchTask& task) { /*! \brief Return whether the search task is targeting a GPU. */ inline bool IsGPUTask(const SearchTask& task) { - return (task)->target->kind->device_type == kDLGPU || + return (task)->target->kind->device_type == kDLCUDA || (task)->target->kind->device_type == kDLOpenCL || (task)->target->kind->device_type == kDLVulkan || (task)->target->kind->device_type == kDLMetal || @@ -63,7 +63,7 @@ inline bool IsGPUTask(const SearchTask& task) { /*! \brief Return whether the search task is targeting a CUDA GPU. */ inline bool IsCUDATask(const SearchTask& task) { - return (task)->target->kind->device_type == kDLGPU; + return (task)->target->kind->device_type == kDLCUDA; } /*! \brief Return whether the search task is targeting a OpenCL GPU. */ diff --git a/src/auto_scheduler/search_task.cc b/src/auto_scheduler/search_task.cc index 80fb71d84388..03d880e7769e 100755 --- a/src/auto_scheduler/search_task.cc +++ b/src/auto_scheduler/search_task.cc @@ -57,11 +57,11 @@ HardwareParams HardwareParamsNode::GetDefaultHardwareParams(const Target& target const auto device_type = target->kind->device_type; if (device_type == kDLCPU) { return HardwareParams(tvm::runtime::threading::MaxConcurrency(), 64, 64, 0, 0, 0, 0, 0); - } else if (device_type == kDLGPU || device_type == kDLROCM) { + } else if (device_type == kDLCUDA || device_type == kDLROCM) { auto dev = Device{static_cast(device_type), 0}; - auto device_name = device_type == kDLGPU ? "device_api.gpu" : "device_api.rocm"; + auto device_name = device_type == kDLCUDA ? "device_api.cuda" : "device_api.rocm"; auto func = tvm::runtime::Registry::Get(device_name); - ICHECK(func != nullptr) << "Cannot find GPU device_api in registry"; + ICHECK(func != nullptr) << "Cannot find CUDA device_api in registry"; auto device_api = static_cast(((*func)()).operator void*()); tvm::runtime::TVMRetValue ret; diff --git a/src/contrib/tf_op/tvm_dso_op_kernels.cc b/src/contrib/tf_op/tvm_dso_op_kernels.cc index c816119d0fad..fb483ee6f2e0 100644 --- a/src/contrib/tf_op/tvm_dso_op_kernels.cc +++ b/src/contrib/tf_op/tvm_dso_op_kernels.cc @@ -69,7 +69,7 @@ class TensorAsBuf { if (device_type == kDLCPU) { memcpy(origin_buf, buf + offset, size); #ifdef TF_TVMDSOOP_ENABLE_GPU - } else if (device_type == kDLGPU) { + } else if (device_type == kDLCUDA) { cudaMemcpy(origin_buf, buf + offset, size, cudaMemcpyDeviceToDevice); #endif } else { @@ -85,7 +85,7 @@ class TensorAsBuf { if (device_type == kDLCPU) { memcpy(buf + offset, origin_buf, size); #ifdef TF_TVMDSOOP_ENABLE_GPU - } else if (device_type == kDLGPU) { + } else if (device_type == kDLCUDA) { cudaMemcpy(buf + offset, origin_buf, size, cudaMemcpyDeviceToDevice); #endif } else { @@ -192,7 +192,7 @@ class TVMDSOOpTrait { template <> class TVMDSOOpTrait { public: - static const int device_type = kDLGPU; + static const int device_type = kDLCUDA; static int device_id(OpKernelContext* context) { auto device_base = context->device(); diff --git a/src/relay/backend/build_module.cc b/src/relay/backend/build_module.cc index 880407f14b8e..00b6fed8c64a 100644 --- a/src/relay/backend/build_module.cc +++ b/src/relay/backend/build_module.cc @@ -429,7 +429,7 @@ class RelayBuildModule : public runtime::ModuleNode { Target CreateDefaultTarget(int device_type) { std::string name = runtime::DeviceName(device_type); if (name == "cpu") return Target("llvm"); - if (name == "gpu") return Target("cuda"); + if (name == "cuda") return Target("cuda"); return Target(name); } diff --git a/src/relay/backend/vm/compiler.cc b/src/relay/backend/vm/compiler.cc index afc01aab53c2..832cc0ee3891 100644 --- a/src/relay/backend/vm/compiler.cc +++ b/src/relay/backend/vm/compiler.cc @@ -234,7 +234,7 @@ std::vector ToAllocTensorShape(NDArray shape) { Target CreateDefaultTarget(int device_type) { std::string name = runtime::DeviceName(device_type); if (name == "cpu") return Target("llvm"); - if (name == "gpu") return Target("cuda"); + if (name == "cuda") return Target("cuda"); return Target(name); } diff --git a/src/runtime/contrib/cudnn/cudnn_utils.cc b/src/runtime/contrib/cudnn/cudnn_utils.cc index 006064e57a19..da67c2e1a9a5 100644 --- a/src/runtime/contrib/cudnn/cudnn_utils.cc +++ b/src/runtime/contrib/cudnn/cudnn_utils.cc @@ -96,7 +96,7 @@ const void* CuDNNDataType::GetConst<1>(cudnnDataType_t type) { CuDNNThreadEntry::CuDNNThreadEntry() { auto stream = runtime::CUDAThreadEntry::ThreadLocal()->stream; - auto func = runtime::Registry::Get("device_api.gpu"); + auto func = runtime::Registry::Get("device_api.cuda"); void* ret = (*func)(); cuda_api = static_cast(ret); CUDNN_CALL(cudnnCreate(&handle)); diff --git a/src/runtime/contrib/tensorrt/tensorrt_builder.cc b/src/runtime/contrib/tensorrt/tensorrt_builder.cc index e98413eacc7c..b8d6f6cd9ff0 100644 --- a/src/runtime/contrib/tensorrt/tensorrt_builder.cc +++ b/src/runtime/contrib/tensorrt/tensorrt_builder.cc @@ -248,13 +248,13 @@ void TensorRTBuilder::CleanUp() { void TensorRTBuilder::AllocateDeviceBuffer(nvinfer1::ICudaEngine* engine, const std::string& name, std::vector* device_buffers) { const uint32_t entry_id = entry_id_map_[name]; - if (data_entry_[entry_id]->device.device_type != kDLGPU) { + if (data_entry_[entry_id]->device.device_type != kDLCUDA) { const int binding_index = engine->getBindingIndex(name.c_str()); ICHECK_NE(binding_index, -1); std::vector shape(data_entry_[entry_id]->shape, data_entry_[entry_id]->shape + data_entry_[entry_id]->ndim); device_buffers->at(binding_index) = - runtime::NDArray::Empty(shape, data_entry_[entry_id]->dtype, {kDLGPU, 0}); + runtime::NDArray::Empty(shape, data_entry_[entry_id]->dtype, {kDLCUDA, 0}); } } diff --git a/src/runtime/contrib/tensorrt/tensorrt_runtime.cc b/src/runtime/contrib/tensorrt/tensorrt_runtime.cc index 7efa5bf73186..e96359481ddb 100644 --- a/src/runtime/contrib/tensorrt/tensorrt_runtime.cc +++ b/src/runtime/contrib/tensorrt/tensorrt_runtime.cc @@ -135,7 +135,7 @@ class TensorRTRuntime : public JSONRuntimeBase { const std::string name = nodes_[nid].GetOpName() + "_" + std::to_string(j); int binding_index = engine->getBindingIndex(name.c_str()); ICHECK_NE(binding_index, -1); - if (data_entry_[eid]->device.device_type == kDLGPU) { + if (data_entry_[eid]->device.device_type == kDLCUDA) { bindings[binding_index] = data_entry_[eid]->data; } else { device_buffers[binding_index].CopyFrom(data_entry_[eid]); @@ -150,7 +150,7 @@ class TensorRTRuntime : public JSONRuntimeBase { const std::string& name = engine_and_context.outputs[i]; int binding_index = engine->getBindingIndex(name.c_str()); ICHECK_NE(binding_index, -1); - if (data_entry_[eid]->device.device_type == kDLGPU) { + if (data_entry_[eid]->device.device_type == kDLCUDA) { bindings[binding_index] = data_entry_[eid]->data; } else { bindings[binding_index] = device_buffers[binding_index]->data; @@ -173,7 +173,7 @@ class TensorRTRuntime : public JSONRuntimeBase { const std::string& name = engine_and_context.outputs[i]; int binding_index = engine->getBindingIndex(name.c_str()); ICHECK_NE(binding_index, -1); - if (data_entry_[eid]->device.device_type != kDLGPU) { + if (data_entry_[eid]->device.device_type != kDLCUDA) { device_buffers[binding_index].CopyTo(const_cast(data_entry_[eid])); } } diff --git a/src/runtime/cuda/cuda_device_api.cc b/src/runtime/cuda/cuda_device_api.cc index d6c939bfe22c..47f038b5c612 100644 --- a/src/runtime/cuda/cuda_device_api.cc +++ b/src/runtime/cuda/cuda_device_api.cc @@ -111,7 +111,7 @@ class CUDADeviceAPI final : public DeviceAPI { void* AllocDataSpace(Device dev, size_t nbytes, size_t alignment, DLDataType type_hint) final { ICHECK_EQ(256 % alignment, 0U) << "CUDA space is aligned at 256 bytes"; void* ret; - if (dev.device_type == kDLCPUPinned) { + if (dev.device_type == kDLCUDAHost) { CUDA_CALL(cudaMallocHost(&ret, nbytes)); } else { CUDA_CALL(cudaSetDevice(dev.device_id)); @@ -121,7 +121,7 @@ class CUDADeviceAPI final : public DeviceAPI { } void FreeDataSpace(Device dev, void* ptr) final { - if (dev.device_type == kDLCPUPinned) { + if (dev.device_type == kDLCUDAHost) { CUDA_CALL(cudaFreeHost(ptr)); } else { CUDA_CALL(cudaSetDevice(dev.device_id)); @@ -137,11 +137,11 @@ class CUDADeviceAPI final : public DeviceAPI { from = static_cast(from) + from_offset; to = static_cast(to) + to_offset; - if (dev_from.device_type == kDLCPUPinned) { + if (dev_from.device_type == kDLCUDAHost) { dev_from.device_type = kDLCPU; } - if (dev_to.device_type == kDLCPUPinned) { + if (dev_to.device_type == kDLCUDAHost) { dev_to.device_type = kDLCPU; } @@ -151,17 +151,17 @@ class CUDADeviceAPI final : public DeviceAPI { return; } - if (dev_from.device_type == kDLGPU && dev_to.device_type == kDLGPU) { + if (dev_from.device_type == kDLCUDA && dev_to.device_type == kDLCUDA) { CUDA_CALL(cudaSetDevice(dev_from.device_id)); if (dev_from.device_id == dev_to.device_id) { GPUCopy(from, to, size, cudaMemcpyDeviceToDevice, cu_stream); } else { cudaMemcpyPeerAsync(to, dev_to.device_id, from, dev_from.device_id, size, cu_stream); } - } else if (dev_from.device_type == kDLGPU && dev_to.device_type == kDLCPU) { + } else if (dev_from.device_type == kDLCUDA && dev_to.device_type == kDLCPU) { CUDA_CALL(cudaSetDevice(dev_from.device_id)); GPUCopy(from, to, size, cudaMemcpyDeviceToHost, cu_stream); - } else if (dev_from.device_type == kDLCPU && dev_to.device_type == kDLGPU) { + } else if (dev_from.device_type == kDLCPU && dev_to.device_type == kDLCUDA) { CUDA_CALL(cudaSetDevice(dev_to.device_id)); GPUCopy(from, to, size, cudaMemcpyHostToDevice, cu_stream); } else { @@ -231,16 +231,16 @@ class CUDADeviceAPI final : public DeviceAPI { typedef dmlc::ThreadLocalStore CUDAThreadStore; -CUDAThreadEntry::CUDAThreadEntry() : pool(kDLGPU, CUDADeviceAPI::Global()) {} +CUDAThreadEntry::CUDAThreadEntry() : pool(kDLCUDA, CUDADeviceAPI::Global()) {} CUDAThreadEntry* CUDAThreadEntry::ThreadLocal() { return CUDAThreadStore::Get(); } -TVM_REGISTER_GLOBAL("device_api.gpu").set_body([](TVMArgs args, TVMRetValue* rv) { +TVM_REGISTER_GLOBAL("device_api.cuda").set_body([](TVMArgs args, TVMRetValue* rv) { DeviceAPI* ptr = CUDADeviceAPI::Global(); *rv = static_cast(ptr); }); -TVM_REGISTER_GLOBAL("device_api.cpu_pinned").set_body([](TVMArgs args, TVMRetValue* rv) { +TVM_REGISTER_GLOBAL("device_api.cuda_host").set_body([](TVMArgs args, TVMRetValue* rv) { DeviceAPI* ptr = CUDADeviceAPI::Global(); *rv = static_cast(ptr); }); diff --git a/src/runtime/module.cc b/src/runtime/module.cc index d84a8215421f..15b9c0dde877 100644 --- a/src/runtime/module.cc +++ b/src/runtime/module.cc @@ -126,7 +126,7 @@ bool RuntimeEnabled(const std::string& target) { if (target == "cpu") { return true; } else if (target == "cuda" || target == "gpu") { - f_name = "device_api.gpu"; + f_name = "device_api.cuda"; } else if (target == "cl" || target == "opencl" || target == "sdaccel") { f_name = "device_api.opencl"; } else if (target == "mtl" || target == "metal") { diff --git a/src/runtime/ndarray.cc b/src/runtime/ndarray.cc index 4b52a7d37ce2..3d3466bed47c 100644 --- a/src/runtime/ndarray.cc +++ b/src/runtime/ndarray.cc @@ -231,8 +231,8 @@ void NDArray::CopyFromTo(const DLTensor* from, DLTensor* to, TVMStreamHandle str ICHECK_EQ(from_size, to_size) << "TVMArrayCopyFromTo: The size must exactly match"; ICHECK(from->device.device_type == to->device.device_type || from->device.device_type == kDLCPU || - to->device.device_type == kDLCPU || from->device.device_type == kDLCPUPinned || - to->device.device_type == kDLCPUPinned) + to->device.device_type == kDLCPU || from->device.device_type == kDLCUDAHost || + to->device.device_type == kDLCUDAHost) << "Can not copy across different device types directly"; // Use the device that is *not* a cpu device to get the correct device diff --git a/src/target/target_kind.cc b/src/target/target_kind.cc index 474b1b0d8ac4..cc493b984d16 100644 --- a/src/target/target_kind.cc +++ b/src/target/target_kind.cc @@ -152,7 +152,7 @@ Map UpdateNVPTXAttrs(Map attrs) { } else { // Use the compute version of the first CUDA GPU instead TVMRetValue version; - if (!DetectDeviceFlag({kDLGPU, 0}, runtime::kComputeVersion, &version)) { + if (!DetectDeviceFlag({kDLCUDA, 0}, runtime::kComputeVersion, &version)) { LOG(WARNING) << "Unable to detect CUDA version, default to \"-mcpu=sm_20\" instead"; arch = 20; } else { @@ -230,7 +230,7 @@ TVM_REGISTER_TARGET_KIND("c", kDLCPU) .add_attr_option("executor") .set_default_keys({"cpu"}); -TVM_REGISTER_TARGET_KIND("cuda", kDLGPU) +TVM_REGISTER_TARGET_KIND("cuda", kDLCUDA) .add_attr_option("mcpu") .add_attr_option("arch") .add_attr_option("system-lib") @@ -241,7 +241,7 @@ TVM_REGISTER_TARGET_KIND("cuda", kDLGPU) .add_attr_option("max_threads_per_block") .set_default_keys({"cuda", "gpu"}); -TVM_REGISTER_TARGET_KIND("nvptx", kDLGPU) +TVM_REGISTER_TARGET_KIND("nvptx", kDLCUDA) .add_attr_option("mcpu") .add_attr_option("mtriple") .add_attr_option("system-lib") diff --git a/src/te/schedule/schedule_postproc_rewrite_for_tensor_core.cc b/src/te/schedule/schedule_postproc_rewrite_for_tensor_core.cc index 377ad5c7a40a..951bd6c18706 100644 --- a/src/te/schedule/schedule_postproc_rewrite_for_tensor_core.cc +++ b/src/te/schedule/schedule_postproc_rewrite_for_tensor_core.cc @@ -1089,7 +1089,7 @@ Stmt SchedulePostProcRewriteForTensorCore(Stmt stmt, Schedule schedule, } // Check if current runtime support GPU CUDA - Device dev{kDLGPU, 0}; + Device dev{kDLCUDA, 0}; auto api = tvm::runtime::DeviceAPI::Get(dev, true); if (api == nullptr) { return stmt; diff --git a/src/tir/analysis/verify_memory.cc b/src/tir/analysis/verify_memory.cc index 905384f29908..3c29e4e84bca 100644 --- a/src/tir/analysis/verify_memory.cc +++ b/src/tir/analysis/verify_memory.cc @@ -149,7 +149,7 @@ class MemoryAccessVerifier final : protected StmtExprVisitor { /// Check if a given DLDeviceType/TVMDeviceExtType value denotes GPU device. static bool IsGPUDevice(int dev_type) { - return kDLGPU == dev_type || kDLOpenCL == dev_type || kDLVulkan == dev_type || + return kDLCUDA == dev_type || kDLOpenCL == dev_type || kDLVulkan == dev_type || kDLMetal == dev_type || kDLROCM == dev_type || kOpenGL == dev_type; } /// Check if a given DLDeviceType/TVMDeviceExtType value denotes FPGA device. diff --git a/tests/cpp/build_module_test.cc b/tests/cpp/build_module_test.cc index e9373936e0d4..8cc5c4bc0a3a 100644 --- a/tests/cpp/build_module_test.cc +++ b/tests/cpp/build_module_test.cc @@ -166,7 +166,7 @@ TEST(BuildModule, Heterogeneous) { // Initialize graph executor. int cpu_dev_ty = static_cast(kDLCPU); int cpu_dev_id = 0; - int gpu_dev_ty = static_cast(kDLGPU); + int gpu_dev_ty = static_cast(kDLCUDA); int gpu_dev_id = 0; const runtime::PackedFunc* graph_executor = diff --git a/tests/python/all-platform-minimal-test/test_runtime_packed_func.py b/tests/python/all-platform-minimal-test/test_runtime_packed_func.py index 9318b0cc1783..f905ef8e117e 100644 --- a/tests/python/all-platform-minimal-test/test_runtime_packed_func.py +++ b/tests/python/all-platform-minimal-test/test_runtime_packed_func.py @@ -101,10 +101,10 @@ def myfunc(ss): def test_device(): def test_device_func(dev): - assert tvm.gpu(7) == dev + assert tvm.cuda(7) == dev return tvm.cpu(0) - x = test_device_func(tvm.gpu(7)) + x = test_device_func(tvm.cuda(7)) assert x == tvm.cpu(0) x = tvm.opencl(10) x = tvm.testing.device_test(x, x.device_type, x.device_id) diff --git a/tests/python/contrib/test_cublas.py b/tests/python/contrib/test_cublas.py index c4e6f89deadc..d871a384e1ff 100644 --- a/tests/python/contrib/test_cublas.py +++ b/tests/python/contrib/test_cublas.py @@ -35,7 +35,7 @@ def verify(target="cuda"): if not tvm.get_global_func("tvm.contrib.cublas.matmul", True): print("skip because extern function is not available") return - dev = tvm.gpu(0) + dev = tvm.cuda(0) f = tvm.build(s, [A, B, C], target) a = tvm.nd.array(np.random.uniform(0, 128, size=(n, l)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(0, 128, size=(l, m)).astype(B.dtype), dev) @@ -70,7 +70,7 @@ def verify(target="cuda"): if not tvm.get_global_func("tvm.contrib.cublaslt.matmul", True): print("skip because extern function is not available") return - dev = tvm.gpu(0) + dev = tvm.cuda(0) f = tvm.build(s, [A, B, C], target) a_old = np.random.uniform(0, 128, size=(n, l)) b_old = np.random.uniform(0, 128, size=(l, m)) @@ -126,7 +126,7 @@ def verify(target="cuda"): if not tvm.get_global_func("tvm.contrib.cublas.matmul", True): print("skip because extern function is not available") return - dev = tvm.gpu(0) + dev = tvm.cuda(0) f = tvm.build(s, [A, B, C], target) a = tvm.nd.array(np.random.uniform(size=(j, n, l)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(j, l, m)).astype(B.dtype), dev) diff --git a/tests/python/contrib/test_cudnn.py b/tests/python/contrib/test_cudnn.py index 772d374bc511..845dcbee2b95 100644 --- a/tests/python/contrib/test_cudnn.py +++ b/tests/python/contrib/test_cudnn.py @@ -41,7 +41,7 @@ def verify_conv2d(data_dtype, conv_dtype, tensor_format=0, groups=1): if not tvm.get_global_func("tvm.contrib.cudnn.conv.output_shape", True): print("skip because cudnn is not enabled...") return - if data_dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version): + if data_dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return @@ -71,7 +71,7 @@ def verify_conv2d(data_dtype, conv_dtype, tensor_format=0, groups=1): s = te.create_schedule(Y.op) # validation - dev = tvm.gpu(0) + dev = tvm.cuda(0) f = tvm.build(s, [X, W, Y], "cuda --host=llvm", name="conv2d") x_np = np.random.uniform(-1, 1, xshape).astype(data_dtype) w_np = np.random.uniform(-1, 1, wshape).astype(data_dtype) @@ -150,7 +150,7 @@ def verify_conv3d(data_dtype, conv_dtype, tensor_format=0, groups=1): s = te.create_schedule(Y.op) # validation - dev = tvm.gpu(0) + dev = tvm.cuda(0) f = tvm.build(s, [X, W, Y], target="cuda --host=llvm", name="conv3d") x_np = np.random.uniform(-1, 1, xshape).astype(data_dtype) w_np = np.random.uniform(-1, 1, wshape).astype(data_dtype) @@ -178,7 +178,7 @@ def verify_softmax(shape, axis, dtype="float32"): B = cudnn.softmax(A, axis) s = te.create_schedule([B.op]) - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=shape).astype(dtype) b_np = tvm.topi.testing.softmax_python(a_np) a = tvm.nd.array(a_np, dev) @@ -193,7 +193,7 @@ def verify_softmax_4d(shape, dtype="float32"): B = cudnn.softmax(A, axis=1) s = te.create_schedule([B.op]) - dev = tvm.gpu(0) + dev = tvm.cuda(0) n, c, h, w = shape a_np = np.random.uniform(size=shape).astype(dtype) b_np = tvm.topi.testing.softmax_python(a_np.transpose(0, 2, 3, 1).reshape(h * w, c)) diff --git a/tests/python/contrib/test_tensorrt.py b/tests/python/contrib/test_tensorrt.py index 9810759addb3..52ee87e00599 100644 --- a/tests/python/contrib/test_tensorrt.py +++ b/tests/python/contrib/test_tensorrt.py @@ -35,7 +35,7 @@ def skip_codegen_test(): """Skip test if TensorRT and CUDA codegen are not present""" - if not tvm.runtime.enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.runtime.enabled("cuda") or not tvm.cuda(0).exist: print("Skip because CUDA is not enabled.") return True if not tvm.get_global_func("relay.ext.tensorrt", True): @@ -45,7 +45,7 @@ def skip_codegen_test(): def skip_runtime_test(): - if not tvm.runtime.enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.runtime.enabled("cuda") or not tvm.cuda(0).exist: print("Skip because CUDA is not enabled.") return True if not tensorrt.is_tensorrt_runtime_enabled(): @@ -143,10 +143,10 @@ def compile_and_run(mod, params, i_data, mode="vm", use_trt=True): with tvm.transform.PassContext( opt_level=3, config={"relay.ext.tensorrt.options": config} ): - exec = relay.create_executor(mode, mod=mod, device=tvm.gpu(0), target="cuda") + exec = relay.create_executor(mode, mod=mod, device=tvm.cuda(0), target="cuda") else: with tvm.transform.PassContext(opt_level=3): - exec = relay.create_executor(mode, mod=mod, device=tvm.gpu(0), target="cuda") + exec = relay.create_executor(mode, mod=mod, device=tvm.cuda(0), target="cuda") res = exec.evaluate()(i_data, **params) if not skip_runtime_test() else None return res @@ -199,12 +199,12 @@ def test_tensorrt_simple(): opt_level=3, config={"relay.ext.tensorrt.options": config} ): relay_exec = relay.create_executor( - mode, mod=mod, device=tvm.gpu(0), target="cuda" + mode, mod=mod, device=tvm.cuda(0), target="cuda" ) else: with tvm.transform.PassContext(opt_level=3): relay_exec = relay.create_executor( - mode, mod=mod, device=tvm.gpu(0), target="cuda" + mode, mod=mod, device=tvm.cuda(0), target="cuda" ) if not skip_runtime_test(): result_dict[result_key] = relay_exec.evaluate()(x_data, y_data, z_data) @@ -247,7 +247,7 @@ def test_tensorrt_not_compatible(): mod, config = tensorrt.partition_for_tensorrt(mod) for mode in ["graph", "vm"]: with tvm.transform.PassContext(opt_level=3, config={"relay.ext.tensorrt.options": config}): - exec = relay.create_executor(mode, mod=mod, device=tvm.gpu(0), target="cuda") + exec = relay.create_executor(mode, mod=mod, device=tvm.cuda(0), target="cuda") if not skip_runtime_test(): results = exec.evaluate()(x_data) @@ -273,7 +273,7 @@ def compile_graph(mod, params): return graph, lib, params def run_graph(graph, lib, params): - mod_ = graph_executor.create(graph, lib, device=tvm.gpu(0)) + mod_ = graph_executor.create(graph, lib, device=tvm.cuda(0)) mod_.load_params(params) mod_.run(data=i_data) res = mod_.get_output(0) @@ -330,7 +330,7 @@ def compile_vm(mod, params): def run_vm(code, lib): vm_exec = tvm.runtime.vm.Executable.load_exec(code, lib) - vm = VirtualMachine(vm_exec, tvm.gpu(0)) + vm = VirtualMachine(vm_exec, tvm.cuda(0)) result = vm.invoke("main", data=i_data) return result @@ -1415,7 +1415,7 @@ def test_empty_subgraph(): x_data = np.random.uniform(-1, 1, x_shape).astype("float32") for mode in ["graph", "vm"]: with tvm.transform.PassContext(opt_level=3): - exec = relay.create_executor(mode, mod=mod, device=tvm.gpu(0), target="cuda") + exec = relay.create_executor(mode, mod=mod, device=tvm.cuda(0), target="cuda") if not skip_runtime_test(): results = exec.evaluate()(x_data) diff --git a/tests/python/frontend/pytorch/test_forward.py b/tests/python/frontend/pytorch/test_forward.py index f9f3bba25937..067af7f6a429 100644 --- a/tests/python/frontend/pytorch/test_forward.py +++ b/tests/python/frontend/pytorch/test_forward.py @@ -1240,7 +1240,7 @@ def forward(self, *args): check_fp16 = False try: # Only check half precision on supported hardwares. - if have_fp16(tvm.gpu(0).compute_version): + if have_fp16(tvm.cuda(0).compute_version): check_fp16 = True except Exception as e: # If GPU is not enabled in TVM, skip the fp16 test. diff --git a/tests/python/nightly/quantization/test_quantization_accuracy.py b/tests/python/nightly/quantization/test_quantization_accuracy.py index 57fa49e93a04..5cf4dfee7f71 100644 --- a/tests/python/nightly/quantization/test_quantization_accuracy.py +++ b/tests/python/nightly/quantization/test_quantization_accuracy.py @@ -93,7 +93,7 @@ def get_model(model_name, batch_size, qconfig, target=None, original=False, simu def eval_acc( - model, dataset, batch_fn, target=tvm.target.cuda(), device=tvm.gpu(), log_interval=100 + model, dataset, batch_fn, target=tvm.target.cuda(), device=tvm.cuda(), log_interval=100 ): with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(model, target) diff --git a/tests/python/relay/test_any.py b/tests/python/relay/test_any.py index fe5e04844bb3..7d1c577234b0 100644 --- a/tests/python/relay/test_any.py +++ b/tests/python/relay/test_any.py @@ -508,7 +508,7 @@ def verify_any_conv2d( targets = None if use_cudnn and tvm.get_global_func("tvm.contrib.cudnn.conv.output_shape", True): - targets = [("cuda -libs=cudnn", tvm.gpu(0))] + targets = [("cuda -libs=cudnn", tvm.cuda(0))] check_result([data_np, kernel_np], mod, ref_out_shape, assert_shape=True, targets=targets) @@ -811,7 +811,7 @@ def verify_any_dense( targets = None if use_cublas and tvm.get_global_func("tvm.contrib.cublas.matmul", True): - targets = [("cuda -libs=cublas", tvm.gpu(0))] + targets = [("cuda -libs=cublas", tvm.cuda(0))] check_result([data_np, weight_np], mod, ref_out_shape, assert_shape=True, targets=targets) diff --git a/tests/python/relay/test_auto_scheduler_tuning.py b/tests/python/relay/test_auto_scheduler_tuning.py index 13651e7296f7..d3c54fd11769 100644 --- a/tests/python/relay/test_auto_scheduler_tuning.py +++ b/tests/python/relay/test_auto_scheduler_tuning.py @@ -69,7 +69,7 @@ def tune_network(network, target): # Check the correctness def get_output(data, lib): - dev = tvm.gpu() + dev = tvm.cuda() module = graph_executor.GraphModule(lib["default"](dev)) module.set_input("data", data) module.run() diff --git a/tests/python/relay/test_cpp_build_module.py b/tests/python/relay/test_cpp_build_module.py index 7d2209a34835..0d98cc0ed7ff 100644 --- a/tests/python/relay/test_cpp_build_module.py +++ b/tests/python/relay/test_cpp_build_module.py @@ -65,7 +65,7 @@ def test_basic_build(): def test_fp16_build(): dtype = "float16" - dev = tvm.gpu(0) + dev = tvm.cuda(0) if dtype == "float16" and not have_fp16(dev.compute_version): print("skip because gpu does not support fp16") return diff --git a/tests/python/relay/test_op_level1.py b/tests/python/relay/test_op_level1.py index 91b37135fbe1..aef3c3cdccc2 100644 --- a/tests/python/relay/test_op_level1.py +++ b/tests/python/relay/test_op_level1.py @@ -67,7 +67,7 @@ def check_single_op(opfunc, ref, dtype): if ( dtype == "float16" and target == "cuda" - and not have_fp16(tvm.gpu(0).compute_version) + and not have_fp16(tvm.cuda(0).compute_version) ): continue intrp = relay.create_executor("graph", device=dev, target=target) @@ -129,7 +129,7 @@ def check_binary_op(opfunc, ref, dtype): if ( dtype == "float16" and target == "cuda" - and not have_fp16(tvm.gpu(0).compute_version) + and not have_fp16(tvm.cuda(0).compute_version) ): continue intrp = relay.create_executor("graph", device=dev, target=target) @@ -158,7 +158,7 @@ def verify_expand_dims(dshape, dtype, oshape, axis, num_newaxis): if ( dtype == "float16" and target == "cuda" - and not have_fp16(tvm.gpu(0).compute_version) + and not have_fp16(tvm.cuda(0).compute_version) ): continue data = np.random.uniform(size=dshape).astype(dtype) @@ -193,7 +193,7 @@ def test_bias_add(): if ( dtype == "float16" and target == "cuda" - and not have_fp16(tvm.gpu(0).compute_version) + and not have_fp16(tvm.cuda(0).compute_version) ): continue intrp = relay.create_executor("graph", device=dev, target=target) @@ -314,7 +314,7 @@ def test_concatenate(): if ( dtype == "float16" and target == "cuda" - and not have_fp16(tvm.gpu(0).compute_version) + and not have_fp16(tvm.cuda(0).compute_version) ): continue intrp1 = relay.create_executor("graph", device=dev, target=target) diff --git a/tests/python/relay/test_pass_context_analysis.py b/tests/python/relay/test_pass_context_analysis.py index e54682be7871..fe19c479292f 100644 --- a/tests/python/relay/test_pass_context_analysis.py +++ b/tests/python/relay/test_pass_context_analysis.py @@ -26,19 +26,19 @@ def test_device_copy(): - if not tvm.testing.device_enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.testing.device_enabled("cuda") or not tvm.cuda(0).exist: return mod = tvm.IRModule() x = relay.var("x", shape=(2, 3)) - copy = relay.op.device_copy(x, tvm.cpu(), tvm.gpu()) + copy = relay.op.device_copy(x, tvm.cpu(), tvm.cuda()) out = copy + relay.const(np.random.rand(2, 3)) glb_var = relay.GlobalVar("main") mod[glb_var] = relay.Function([x], out) ca = context_analysis(mod, tvm.cpu()) cpu_dev = tvm.cpu().device_type - gpu_dev = tvm.gpu().device_type + gpu_dev = tvm.cuda().device_type for expr, dev in ca.items(): if isinstance(expr, _expr.Call): assert dev[0].value == gpu_dev @@ -49,7 +49,7 @@ def test_device_copy(): def test_shape_func(): - if not tvm.testing.device_enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.testing.device_enabled("cuda") or not tvm.cuda(0).exist: return mod = tvm.IRModule() @@ -65,11 +65,11 @@ def test_shape_func(): is_inputs = [False] shape_func = relay.op.vm.shape_func(fn, ins, outs, is_inputs) mod["main"] = relay.Function([x, out], shape_func) - ca = context_analysis(mod, tvm.gpu()) + ca = context_analysis(mod, tvm.cuda()) main = mod["main"] cpu_dev = tvm.cpu().device_type - gpu_dev = tvm.gpu().device_type + gpu_dev = tvm.cuda().device_type assert main.params[0] in ca and ca[main.params[0]][0].value == gpu_dev # The output of shape func should be on cpu. assert main.params[1] in ca and ca[main.params[1]][0].value == cpu_dev @@ -78,7 +78,7 @@ def test_shape_func(): def test_vm_shape_of(): - if not tvm.testing.device_enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.testing.device_enabled("cuda") or not tvm.cuda(0).exist: return mod = tvm.IRModule() @@ -86,17 +86,17 @@ def test_vm_shape_of(): x = relay.var("x", shape=data_shape) y = relay.op.vm.shape_of(x) mod["main"] = relay.Function([x], y) - ca = context_analysis(mod, tvm.gpu()) + ca = context_analysis(mod, tvm.cuda()) main = mod["main"] cpu_dev = tvm.cpu().device_type - gpu_dev = tvm.gpu().device_type + gpu_dev = tvm.cuda().device_type assert main.params[0] in ca and ca[main.params[0]][0].value == gpu_dev assert main.body in ca and ca[main.body][0].value == cpu_dev def test_alloc_storage(): - if not tvm.testing.device_enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.testing.device_enabled("cuda") or not tvm.cuda(0).exist: return mod = tvm.IRModule() @@ -104,14 +104,14 @@ def test_alloc_storage(): size = relay.Var("size", relay.scalar_type("int64")) alignment = relay.Var("alignment", relay.scalar_type("int64")) # allocate a chunk on of memory on gpu. - sto = relay.op.memory.alloc_storage(size, alignment, tvm.gpu()) + sto = relay.op.memory.alloc_storage(size, alignment, tvm.cuda()) mod["main"] = relay.Function([size, alignment], sto) - ca = context_analysis(mod, tvm.gpu()) + ca = context_analysis(mod, tvm.cuda()) main = mod["main"] body = main.body cpu_dev = tvm.cpu().device_type - gpu_dev = tvm.gpu().device_type + gpu_dev = tvm.cuda().device_type # Inputs are unified with alloc storage inputs which are on cpu assert main.params[0] in ca and ca[main.params[0]][0].value == cpu_dev assert main.params[1] in ca and ca[main.params[1]][0].value == cpu_dev @@ -126,7 +126,7 @@ def test_alloc_storage(): def test_alloc_tensor(): - if not tvm.testing.device_enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.testing.device_enabled("cuda") or not tvm.cuda(0).exist: return mod = tvm.IRModule() @@ -136,12 +136,12 @@ def test_alloc_tensor(): sh = relay.const(np.array([3, 2]), dtype="int64") at = relay.op.memory.alloc_tensor(sto, relay.const(0, dtype="int64"), sh) mod["main"] = relay.Function([sto], at) - ca = context_analysis(mod, tvm.gpu()) + ca = context_analysis(mod, tvm.cuda()) main = mod["main"] body = main.body cpu_dev = tvm.cpu().device_type - gpu_dev = tvm.gpu().device_type + gpu_dev = tvm.cuda().device_type # Input of the function falls back to the default device gpu assert main.params[0] in ca and ca[main.params[0]][0].value == gpu_dev @@ -155,7 +155,7 @@ def test_alloc_tensor(): def test_vm_reshape_tensor(): - if not tvm.testing.device_enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.testing.device_enabled("cuda") or not tvm.cuda(0).exist: return x = relay.var("x", shape=(2, 8), dtype="float32") @@ -163,12 +163,12 @@ def test_vm_reshape_tensor(): y = relay.op.vm.reshape_tensor(x, shape, [2, 4, 2]) mod = tvm.IRModule() mod["main"] = relay.Function([x], y) - ca = context_analysis(mod, tvm.gpu()) + ca = context_analysis(mod, tvm.cuda()) main = mod["main"] body = main.body cpu_dev = tvm.cpu().device_type - gpu_dev = tvm.gpu().device_type + gpu_dev = tvm.cuda().device_type # Input of the function falls back to the default device gpu assert main.params[0] in ca and ca[main.params[0]][0].value == gpu_dev @@ -181,7 +181,7 @@ def test_vm_reshape_tensor(): def test_dynamic_input(): - if not tvm.testing.device_enabled("cuda") or not tvm.gpu(0).exist: + if not tvm.testing.device_enabled("cuda") or not tvm.cuda(0).exist: return mod = tvm.IRModule() @@ -195,7 +195,7 @@ def test_dynamic_input(): ca = context_analysis(mod, tvm.cpu()) main = mod["main"] - gpu_dev = tvm.gpu().device_type + gpu_dev = tvm.cuda().device_type assert main.params[0] in ca and ca[main.params[0]][0].value == gpu_dev assert main.params[1] in ca and ca[main.params[1]][0].value == gpu_dev assert main.body in ca and ca[main.body][0].value == gpu_dev diff --git a/tests/python/topi/python/test_topi_relu.py b/tests/python/topi/python/test_topi_relu.py index 9acf98d8259f..947a6ca007c8 100644 --- a/tests/python/topi/python/test_topi_relu.py +++ b/tests/python/topi/python/test_topi_relu.py @@ -35,7 +35,7 @@ def verify_relu(m, n, dtype="float32"): b_np = a_np * (a_np > 0) def check_target(target, dev): - if dtype == "float16" and target == "cuda" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and target == "cuda" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because %s does not have fp16 support" % target) return print("Running on target: %s" % target) diff --git a/tests/python/topi/python/test_topi_tensor.py b/tests/python/topi/python/test_topi_tensor.py index d395c0c4e62f..2d4eed3f5ded 100644 --- a/tests/python/topi/python/test_topi_tensor.py +++ b/tests/python/topi/python/test_topi_tensor.py @@ -95,7 +95,7 @@ def check_targeta(targeta): if not tvm.testing.device_enabled(targeta): print("Skip because %s is not enabled" % targeta) return - if dtype == "float16" and targeta == "cuda" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and targeta == "cuda" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return with tvm.target.Target(targeta): diff --git a/tests/python/unittest/test_runtime_graph_cuda_graph.py b/tests/python/unittest/test_runtime_graph_cuda_graph.py index ee7750e3e142..fb0c736090e5 100644 --- a/tests/python/unittest/test_runtime_graph_cuda_graph.py +++ b/tests/python/unittest/test_runtime_graph_cuda_graph.py @@ -73,7 +73,7 @@ def test_graph_simple(): def check_verify(): mlib = tvm.build(s, [A, B], "cuda", name="myadd") - dev = tvm.gpu(0) + dev = tvm.cuda(0) try: mod = cuda_graph_executor.create(graph, mlib, dev) except ValueError: diff --git a/tests/python/unittest/test_runtime_module_based_interface.py b/tests/python/unittest/test_runtime_module_based_interface.py index f85edfc8d033..3100414aee73 100644 --- a/tests/python/unittest/test_runtime_module_based_interface.py +++ b/tests/python/unittest/test_runtime_module_based_interface.py @@ -97,7 +97,7 @@ def test_gpu(): with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") - dev = tvm.gpu() + dev = tvm.cuda() # raw api gmod = complied_graph_lib["default"](dev) @@ -190,7 +190,7 @@ def verify_gpu_export(obj_format): # test the robustness wrt to parent module destruction def setup_gmod(): loaded_lib = tvm.runtime.load_module(path_lib) - dev = tvm.gpu() + dev = tvm.cuda() return loaded_lib["default"](dev) gmod = setup_gmod() @@ -378,7 +378,7 @@ def verify_gpu_remove_package_params(obj_format): fo.write(runtime.save_param_dict(complied_graph_lib.get_params())) loaded_lib = tvm.runtime.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") - dev = tvm.gpu(0) + dev = tvm.cuda(0) # raw api gmod = loaded_lib["default"](dev) @@ -559,7 +559,7 @@ def test_cuda_graph_executor(): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") - dev = tvm.gpu() + dev = tvm.cuda() try: gmod = complied_graph_lib["cuda_graph_create"](dev) except: diff --git a/tests/python/unittest/test_target_codegen_blob.py b/tests/python/unittest/test_target_codegen_blob.py index c7698197c111..2a309893e663 100644 --- a/tests/python/unittest/test_target_codegen_blob.py +++ b/tests/python/unittest/test_target_codegen_blob.py @@ -57,7 +57,7 @@ def verify(data): loaded_lib = tvm.runtime.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape).astype("float32") - dev = tvm.gpu() + dev = tvm.cuda() module = graph_executor.GraphModule(loaded_lib["default"](dev)) module.set_input("data", data) module.run() @@ -68,7 +68,7 @@ def verify(data): @tvm.testing.uses_gpu def test_cuda_lib(): - dev = tvm.gpu(0) + dev = tvm.cuda(0) for device in ["llvm", "cuda"]: if not tvm.testing.device_enabled(device): print("skip because %s is not enabled..." % device) diff --git a/tests/python/unittest/test_target_codegen_cuda.py b/tests/python/unittest/test_target_codegen_cuda.py index e639e6b5ad36..846bdcb54bd1 100644 --- a/tests/python/unittest/test_target_codegen_cuda.py +++ b/tests/python/unittest/test_target_codegen_cuda.py @@ -33,10 +33,10 @@ def test_cuda_vectorize_add(): num_thread = 8 def check_cuda(dtype, n, lanes): - if dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return - if dtype == "int8" and not have_int8(tvm.gpu(0).compute_version): + if dtype == "int8" and not have_int8(tvm.cuda(0).compute_version): print("skip because gpu does not support int8") return A = te.placeholder((n,), name="A", dtype="%sx%d" % (dtype, lanes)) @@ -46,7 +46,7 @@ def check_cuda(dtype, n, lanes): s[B].bind(xo, bx) s[B].bind(xi, tx) fun = tvm.build(s, [A, B], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np.random.uniform(size=(n, lanes))) c = tvm.nd.empty((n,), B.dtype, dev) fun(a, c) @@ -70,7 +70,7 @@ def check_cuda(dtype, n, lanes): @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_bf16_vectorize_add(): - if not have_bf16(tvm.gpu(0).compute_version): + if not have_bf16(tvm.cuda(0).compute_version): print("skip because gpu does not support bf16") return num_thread = 8 @@ -99,7 +99,7 @@ def check_cuda(n, lanes): disabled_pass=["tir.BF16Promote", "tir.BF16CastElimination", "tir.BF16TypeLowering"] ): fun = tvm.build(s, [A, B], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) np_a = np.random.uniform(size=(n, lanes)).astype("float32") np_a = np_bf162np_float(np_float2np_bf16(np_a)) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np_float2np_bf16(np_a)) @@ -120,7 +120,7 @@ def test_cuda_multiply_add(): num_thread = 8 def check_cuda(dtype, n, lanes): - if dtype == "int8" and not have_int8(tvm.gpu(0).compute_version): + if dtype == "int8" and not have_int8(tvm.cuda(0).compute_version): print("skip because gpu does not support int8") return A = te.placeholder((n,), name="A", dtype="%sx%d" % (dtype, lanes)) @@ -138,7 +138,7 @@ def check_cuda(dtype, n, lanes): np_b = np.random.randint(low=-128, high=127, size=(n, lanes)) np_c = np.random.randint(low=0, high=127, size=(n,)) np_d = [sum(x * y) + z for x, y, z in zip(np_a, np_b, np_c)] - dev = tvm.gpu(0) + dev = tvm.cuda(0) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np_a) b = tvm.nd.empty((n,), B.dtype, dev).copyfrom(np_b) c = tvm.nd.empty((n,), C.dtype, dev).copyfrom(np_c) @@ -155,7 +155,7 @@ def test_cuda_vectorize_load(): num_thread = 8 def check_cuda(dtype, n, lanes): - dev = tvm.gpu(0) + dev = tvm.cuda(0) A = te.placeholder((n,), name="A", dtype="%sx%d" % (dtype, lanes)) B = te.compute((n,), lambda i: A[i], name="B") s = te.create_schedule(B.op) @@ -181,7 +181,7 @@ def check_cuda(dtype, n, lanes): def test_cuda_make_int8(): def check_cuda(n, value, lanes): dtype = "int8" - dev = tvm.gpu(0) + dev = tvm.cuda(0) A = te.compute((n, lanes), lambda i, j: tvm.tir.const(value, dtype=dtype)) s = te.create_schedule(A.op) y, x = s[A].op.axis @@ -209,7 +209,7 @@ def check_cuda(n, value, lanes): def test_cuda_make_int4(): def check_cuda(n, value, lanes): dtype = "int4" - dev = tvm.gpu(0) + dev = tvm.cuda(0) A = te.compute((n, lanes), lambda i, j: tvm.tir.const(value, dtype=dtype)) s = te.create_schedule(A.op) y, x = s[A].op.axis @@ -300,7 +300,7 @@ def _transform(f, *_): b_ = np.array((list(range(4))[::-1]) * 16, dtype="int32") c_ = np.zeros((64,), dtype="int32") ref = a_ + np.array((list(range(4))) * 16, dtype="int32") - nda, ndb, ndc = [tvm.nd.array(i, tvm.gpu(0)) for i in [a_, b_, c_]] + nda, ndb, ndc = [tvm.nd.array(i, tvm.cuda(0)) for i in [a_, b_, c_]] module(nda, ndb, ndc) tvm.testing.assert_allclose(ndc.asnumpy(), ref) @@ -440,7 +440,7 @@ def test_cuda_const_float_to_half(): s[c].bind(tx, te.thread_axis("threadIdx.x")) func = tvm.build(s, [a, c], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=shape).astype(a.dtype) c_np = np.zeros(shape=shape, dtype=c.dtype) a = tvm.nd.array(a_np, dev) @@ -528,7 +528,7 @@ def test_cuda_floordiv_with_vectorization(): s[B].bind(xio, tx) func = tvm.build(s, [A, B], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=(n,)).astype(A.dtype) b_np = np.array([a_np[i // k] for i in range(0, n)]) a_nd = tvm.nd.array(a_np, dev) @@ -554,7 +554,7 @@ def test_cuda_floormod_with_vectorization(): s[B].bind(xio, tx) func = tvm.build(s, [A, B], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=(n,)).astype(A.dtype) b_np = np.array([a_np[i % k] for i in range(0, n)]) a_nd = tvm.nd.array(a_np, dev) @@ -567,7 +567,7 @@ def test_cuda_floormod_with_vectorization(): @tvm.testing.requires_cuda def test_vectorized_casts(): def check(t0, t1, factor): - if (t0 == "float16" or t1 == "float16") and not have_fp16(tvm.gpu(0).compute_version): + if (t0 == "float16" or t1 == "float16") and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return @@ -585,7 +585,7 @@ def check(t0, t1, factor): func = tvm.build(s, [A, B, C], "cuda") # correctness - dev = tvm.gpu(0) + dev = tvm.cuda(0) low, high = (0, 20) if t0.startswith("u") or t1.startswith("u") else (-10, 10) a_np = np.random.randint(low, high, size=n).astype(A.dtype) b_np = np.random.randint(low, high, size=n).astype(B.dtype) @@ -664,7 +664,7 @@ def test_vectorized_intrin1(): ] def run_test(tvm_intrin, np_func, dtype): - if dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return # set of intrinsics does not support fp16 yet. @@ -686,7 +686,7 @@ def run_test(tvm_intrin, np_func, dtype): B = te.compute((n,), lambda *i: tvm_intrin(A(*i)), name="B") s = sched(B) f = tvm.build(s, [A, B], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(shape=(n,)).astype(A.dtype), dev) f(a, b) @@ -712,7 +712,7 @@ def run_test(tvm_intrin, np_func): B = te.compute((n,), lambda i: tvm_intrin(A[i], c2), name="B") s = sched(B) f = tvm.build(s, [A, B], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(shape=(n,)).astype(A.dtype), dev) f(a, b) @@ -738,7 +738,7 @@ def run_test(dtype): B = te.compute((n,), lambda i: tvm.tir.popcount(A[i]), name="B") s = sched(B) f = tvm.build(s, [A, B], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a = tvm.nd.array(np.random.randint(0, 100000, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(shape=(n,)).astype(B.dtype), dev) f(a, b) @@ -753,11 +753,11 @@ def run_test(dtype): @tvm.testing.requires_cuda def test_cuda_vectorize_load_permute_pad(): def check_cuda(dtype, n, l, padding, lanes): - if dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return - dev = tvm.gpu(0) + dev = tvm.cuda(0) A = tvm.te.placeholder((n, l), name="A", dtype=dtype) B = tvm.te.compute( (n // lanes, l + 2 * padding, lanes), diff --git a/tests/python/unittest/test_target_codegen_llvm.py b/tests/python/unittest/test_target_codegen_llvm.py index 56a8514b30bf..96b67ea26c64 100644 --- a/tests/python/unittest/test_target_codegen_llvm.py +++ b/tests/python/unittest/test_target_codegen_llvm.py @@ -810,7 +810,7 @@ def do_atomic_add(A): s = tvm.te.create_schedule(C.op) f = tvm.build(s, [A], target="nvptx") - dev = tvm.gpu() + dev = tvm.cuda() a = tvm.nd.array(np.zeros((size,)).astype(A.dtype), dev) f(a) ref = np.zeros((size,)).astype(A.dtype) diff --git a/tests/python/unittest/test_te_schedule_postproc_rewrite_for_tensor_core.py b/tests/python/unittest/test_te_schedule_postproc_rewrite_for_tensor_core.py index e7a8469a8311..0f97e4921cf5 100644 --- a/tests/python/unittest/test_te_schedule_postproc_rewrite_for_tensor_core.py +++ b/tests/python/unittest/test_te_schedule_postproc_rewrite_for_tensor_core.py @@ -100,7 +100,7 @@ def tensor_core_matmul(warp_tile_m=16, m=64, n=32, l=96): func = tvm.build(s, [A, B, C], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=(n, l)).astype(A.dtype) b_np = np.random.uniform(size=(l, m)).astype(B.dtype) c_np = np.zeros((n, m), dtype=np.float32) @@ -195,7 +195,7 @@ def tensor_core_batch_matmul(warp_tile_m=16, m=64, n=32, l=96, batch=2): func = tvm.build(s, [A, B, C], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=(batch, n, l)).astype(A.dtype) b_np = np.random.uniform(size=(batch, l, m)).astype(B.dtype) c_np = np.zeros((batch, n, m), dtype=np.float32) diff --git a/tests/python/unittest/test_te_schedule_tensor_core.py b/tests/python/unittest/test_te_schedule_tensor_core.py index 9491425b3866..e0cf58392d21 100644 --- a/tests/python/unittest/test_te_schedule_tensor_core.py +++ b/tests/python/unittest/test_te_schedule_tensor_core.py @@ -256,7 +256,7 @@ def test_tensor_core_batch_matmal(): func = tvm.build(s, [A, B, C], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=(batch_size, nn, ll, 32, 16)).astype(A.dtype) b_np = np.random.uniform(size=(batch_size, ll, mm, 16, 8)).astype(B.dtype) a = tvm.nd.array(a_np, dev) @@ -432,7 +432,7 @@ def test_tensor_core_batch_conv(): func = tvm.build(s, [A, W, Conv], "cuda") - dev = tvm.gpu(0) + dev = tvm.cuda(0) a_np = np.random.uniform(size=data_shape).astype(A.dtype) w_np = np.random.uniform(size=kernel_shape).astype(W.dtype) a = tvm.nd.array(a_np, dev) diff --git a/tests/python/unittest/test_tir_transform_lower_warp_memory.py b/tests/python/unittest/test_tir_transform_lower_warp_memory.py index ac7204368c1d..2a8407823f69 100644 --- a/tests/python/unittest/test_tir_transform_lower_warp_memory.py +++ b/tests/python/unittest/test_tir_transform_lower_warp_memory.py @@ -92,7 +92,7 @@ def test_lower_warp_memory_correct_indices(): @tvm.testing.requires_cuda def test_lower_warp_memory_cuda_end_to_end(): def check_cuda(dtype): - if dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return @@ -114,7 +114,7 @@ def check_cuda(dtype): xo, xi = s[AA].split(s[AA].op.axis[0], 32) s[AA].bind(xi, tx) - dev = tvm.gpu(0) + dev = tvm.cuda(0) func = tvm.build(s, [A, B], "cuda") A_np = np.array(list(range(m)), dtype=dtype) B_np = np.array( @@ -141,7 +141,7 @@ def check_cuda(dtype): @tvm.testing.requires_cuda def test_lower_warp_memory_cuda_half_a_warp(): def check_cuda(dtype): - if dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return @@ -181,7 +181,7 @@ def check_cuda(dtype): _, x = AA.op.axis s[AA].bind(x, tx) - dev = tvm.gpu(0) + dev = tvm.cuda(0) func = tvm.build(s, [A, B], "cuda") A_np = np.array([list(range(i, m + i)) for i in range(n)], dtype=dtype) B_np = np.array([list(range(1 + i, m + i)) + [i] for i in range(n)], dtype=dtype) @@ -198,7 +198,7 @@ def check_cuda(dtype): @tvm.testing.requires_cuda def test_lower_warp_memory_cuda_2_buffers(): def check_cuda(dtype): - if dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version): + if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return @@ -228,7 +228,7 @@ def check_cuda(dtype): s[BB].bind(xo, bx) s[BB].bind(xi, tx) - dev = tvm.gpu(0) + dev = tvm.cuda(0) func = tvm.build(s, [A, B, C], "cuda") AB_np = np.array(list(range(m)), dtype=dtype) C_np = np.array(list(range(1, m)) + [0], dtype=dtype) * 2 diff --git a/tutorials/auto_scheduler/tune_conv2d_layer_cuda.py b/tutorials/auto_scheduler/tune_conv2d_layer_cuda.py index 41fdcbbdbc82..8664c86d6262 100644 --- a/tutorials/auto_scheduler/tune_conv2d_layer_cuda.py +++ b/tutorials/auto_scheduler/tune_conv2d_layer_cuda.py @@ -145,7 +145,7 @@ def conv2d_layer(N, H, W, CO, CI, KH, KW, stride, padding): conv_np = conv2d_nchw_python(data_np, weight_np, strides, padding) out_np = np.maximum(conv_np + bias_np, 0.0) -dev = tvm.gpu() +dev = tvm.cuda() data_tvm = tvm.nd.array(data_np, device=dev) weight_tvm = tvm.nd.array(weight_np, device=dev) bias_tvm = tvm.nd.array(bias_np, device=dev) diff --git a/tutorials/autotvm/tune_conv2d_cuda.py b/tutorials/autotvm/tune_conv2d_cuda.py index d14f9c33320c..c46180de6d89 100644 --- a/tutorials/autotvm/tune_conv2d_cuda.py +++ b/tutorials/autotvm/tune_conv2d_cuda.py @@ -230,7 +230,7 @@ def conv2d_no_batching(N, H, W, CO, CI, KH, KW, stride, padding): w_np = np.random.uniform(size=(CO, CI, KH, KW)).astype(np.float32) c_np = conv2d_nchw_python(a_np, w_np, strides, padding) -dev = tvm.gpu() +dev = tvm.cuda() a_tvm = tvm.nd.array(a_np, device=dev) w_tvm = tvm.nd.array(w_np, device=dev) c_tvm = tvm.nd.empty(c_np.shape, device=dev) diff --git a/tutorials/frontend/deploy_sparse.py b/tutorials/frontend/deploy_sparse.py index 92f4511cf0b5..eb9b4ee23a1a 100644 --- a/tutorials/frontend/deploy_sparse.py +++ b/tutorials/frontend/deploy_sparse.py @@ -105,7 +105,7 @@ # TVM platform identifier. Note that best cpu performance can be achieved by setting -mcpu # appropriately for your specific machine. CUDA and ROCm are also supported. target = "llvm" -# Which device to run on. Should be one of tvm.cpu() or tvm.gpu(). +# Which device to run on. Should be one of tvm.cpu() or tvm.cuda(). dev = tvm.cpu() # If true, then a sparse variant of the network will be run and # benchmarked. diff --git a/tutorials/frontend/from_caffe2.py b/tutorials/frontend/from_caffe2.py index a3378de8b0e3..1c00f92cfb4f 100644 --- a/tutorials/frontend/from_caffe2.py +++ b/tutorials/frontend/from_caffe2.py @@ -107,7 +107,7 @@ def transform_image(image): from tvm import te from tvm.contrib import graph_executor -# context x86 CPU, use tvm.gpu(0) if you run on GPU +# context x86 CPU, use tvm.cuda(0) if you run on GPU dev = tvm.cpu(0) # create a runtime executor module m = graph_executor.GraphModule(lib["default"](dev)) diff --git a/tutorials/frontend/from_keras.py b/tutorials/frontend/from_keras.py index 5f39a24c9b14..8625465dd2f5 100644 --- a/tutorials/frontend/from_keras.py +++ b/tutorials/frontend/from_keras.py @@ -96,7 +96,7 @@ mod, params = relay.frontend.from_keras(keras_resnet50, shape_dict) # compile the model target = "cuda" -dev = tvm.gpu(0) +dev = tvm.cuda(0) with tvm.transform.PassContext(opt_level=3): executor = relay.build_module.create_executor("graph", mod, dev, target) diff --git a/tutorials/frontend/from_mxnet.py b/tutorials/frontend/from_mxnet.py index bfaac2c6c98e..da1bf4e120b4 100644 --- a/tutorials/frontend/from_mxnet.py +++ b/tutorials/frontend/from_mxnet.py @@ -106,7 +106,7 @@ def transform_image(image): # Now, we would like to reproduce the same forward computation using TVM. from tvm.contrib import graph_executor -dev = tvm.gpu(0) +dev = tvm.cuda(0) dtype = "float32" m = graph_executor.GraphModule(lib["default"](dev)) # set inputs diff --git a/tutorials/frontend/from_tensorflow.py b/tutorials/frontend/from_tensorflow.py index 9c8d0f65878c..468caf5292e9 100644 --- a/tutorials/frontend/from_tensorflow.py +++ b/tutorials/frontend/from_tensorflow.py @@ -72,7 +72,7 @@ # Use these commented settings to build for cuda. # target = tvm.target.Target("cuda", host="llvm") # layout = "NCHW" -# dev = tvm.gpu(0) +# dev = tvm.cuda(0) target = tvm.target.Target("llvm", host="llvm") layout = None dev = tvm.cpu(0) diff --git a/tutorials/get_started/relay_quick_start.py b/tutorials/get_started/relay_quick_start.py index ffc9bbe2a701..9bd3065bdd1c 100644 --- a/tutorials/get_started/relay_quick_start.py +++ b/tutorials/get_started/relay_quick_start.py @@ -107,7 +107,7 @@ # Now we can create graph executor and run the module on Nvidia GPU. # create random input -dev = tvm.gpu() +dev = tvm.cuda() data = np.random.uniform(-1, 1, size=data_shape).astype("float32") # create module module = graph_executor.GraphModule(lib["default"](dev)) diff --git a/tutorials/language/reduction.py b/tutorials/language/reduction.py index f782ac6ca280..206848cebbb4 100644 --- a/tutorials/language/reduction.py +++ b/tutorials/language/reduction.py @@ -137,7 +137,7 @@ # Verify the correctness of result kernel by comparing it to numpy. # nn = 128 -dev = tvm.gpu(0) +dev = tvm.cuda(0) a = tvm.nd.array(np.random.uniform(size=(nn, nn)).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(nn, dtype=B.dtype), dev) fcuda(a, b) diff --git a/tutorials/language/scan.py b/tutorials/language/scan.py index 8124b567177f..88769211a1fd 100644 --- a/tutorials/language/scan.py +++ b/tutorials/language/scan.py @@ -83,7 +83,7 @@ # numpy to verify the correctness of the result. # fscan = tvm.build(s, [X, s_scan], "cuda", name="myscan") -dev = tvm.gpu(0) +dev = tvm.cuda(0) n = 1024 m = 10 a_np = np.random.uniform(size=(m, n)).astype(s_scan.dtype) diff --git a/tutorials/optimize/opt_conv_cuda.py b/tutorials/optimize/opt_conv_cuda.py index 0cecc82aa8ea..0ac2c625bf78 100644 --- a/tutorials/optimize/opt_conv_cuda.py +++ b/tutorials/optimize/opt_conv_cuda.py @@ -238,7 +238,7 @@ # func = tvm.build(s, [A, W, B], "cuda") -dev = tvm.gpu(0) +dev = tvm.cuda(0) a_np = np.random.uniform(size=(in_size, in_size, in_channel, batch)).astype(A.dtype) w_np = np.random.uniform(size=(kernel, kernel, in_channel, out_channel)).astype(W.dtype) a = tvm.nd.array(a_np, dev) diff --git a/tutorials/optimize/opt_conv_tensorcore.py b/tutorials/optimize/opt_conv_tensorcore.py index 0a7798d1b9e1..702e4a777df5 100644 --- a/tutorials/optimize/opt_conv_tensorcore.py +++ b/tutorials/optimize/opt_conv_tensorcore.py @@ -392,7 +392,7 @@ def intrin_func(ins, outs): # Since TensorCores are only supported in NVIDIA GPU with Compute Capability 7.0 or higher, it may not # be able to run on our build server -dev = tvm.gpu(0) +dev = tvm.cuda(0) if nvcc.have_tensorcore(dev.compute_version): with tvm.transform.PassContext(config={"tir.UnrollLoop": {"auto_max_step": 16}}): func = tvm.build(s, [A, W, Conv], "cuda") diff --git a/tutorials/topi/intro_topi.py b/tutorials/topi/intro_topi.py index 1fefae585a2f..5ddb87872df1 100644 --- a/tutorials/topi/intro_topi.py +++ b/tutorials/topi/intro_topi.py @@ -99,7 +99,7 @@ # We can test the correctness by comparing with :code:`numpy` result as follows # func = tvm.build(sg, [a, b, g], "cuda") -dev = tvm.gpu(0) +dev = tvm.cuda(0) a_np = np.random.uniform(size=(x, y, y)).astype(a.dtype) b_np = np.random.uniform(size=(y, y)).astype(b.dtype) g_np = np.sum(np.add(a_np + b_np, a_np * b_np) / 2.0)