diff --git a/topi/python/topi/x86/conv2d.py b/topi/python/topi/x86/conv2d.py index 81d848a4762f..d875f8d6bd4b 100644 --- a/topi/python/topi/x86/conv2d.py +++ b/topi/python/topi/x86/conv2d.py @@ -185,7 +185,19 @@ def conv2d_NCHWc(cfg, data, kernel, strides, padding, dilation, layout, out_layo # Pack data if raw 4-D data is provided. # This can only happen when autotuning. if len(data.shape) == 4: - data, kernel = _pack_data(cfg, data, kernel) + if autotvm.GLOBAL_SCOPE.in_tuning: + # Directly use modified data layout placeholder. + dshape = (n, in_channel // cfg["tile_ic"].size[-1], + ih, iw, cfg["tile_ic"].size[-1]) + data = tvm.te.placeholder(dshape, data.dtype, name="data") + kshape = (num_filter // cfg["tile_oc"].size[-1], + in_channel // cfg["tile_ic"].size[-1], + kernel_height, kernel_width, + cfg["tile_ic"].size[-1], + cfg["tile_oc"].size[-1]) + kernel = tvm.te.placeholder(kshape, kernel.dtype, name="kernel") + else: + data, kernel = _pack_data(cfg, data, kernel) return nn.conv2d_NCHWc(data, kernel, diff --git a/topi/python/topi/x86/conv2d_avx_1x1.py b/topi/python/topi/x86/conv2d_avx_1x1.py index 432f8b287513..978c4b9adb30 100644 --- a/topi/python/topi/x86/conv2d_avx_1x1.py +++ b/topi/python/topi/x86/conv2d_avx_1x1.py @@ -19,7 +19,6 @@ from __future__ import absolute_import as _abs import tvm from tvm import te -from tvm import autotvm from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity from ..nn.pad import pad @@ -69,17 +68,12 @@ def _schedule_conv_NCHWc(s, cfg, data_vec, kernel_vec, conv_out, last): if isinstance(s[data_vec].op, tvm.te.ComputeOp) \ and "pad" in data_vec.op.tag: batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis + s[data_vec].vectorize(ic_block) parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih) s[data_vec].parallel(parallel_axis) data_vec = data_vec.op.input_tensors[0] - if autotvm.GLOBAL_SCOPE.in_tuning: - # only in autotuning, input data of conv2d_NCHWc will be 4-D. - # skip this part during tuning to make records accurate. - # this part will be folded during Relay fold_constant pass. - s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region") - s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region") - elif isinstance(kernel_vec.op, tvm.te.ComputeOp) and \ + if isinstance(kernel_vec.op, tvm.te.ComputeOp) and \ kernel_vec.name == 'kernel_vec': # data and kernel are not pre-computed, schedule layout transform here. # this should only be used by x86 conv2d_nchw, which is for diff --git a/topi/python/topi/x86/conv2d_avx_common.py b/topi/python/topi/x86/conv2d_avx_common.py index ebed14cb924a..a88d168194fc 100644 --- a/topi/python/topi/x86/conv2d_avx_common.py +++ b/topi/python/topi/x86/conv2d_avx_common.py @@ -17,7 +17,6 @@ # pylint: disable=invalid-name,unused-variable,unused-argument,invalid-name """Conv2D schedule on for Intel CPU""" import tvm -from tvm import autotvm from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity from ..generic import conv2d as conv2d_generic @@ -91,17 +90,12 @@ def _schedule_conv_NCHWc(s, cfg, data_vec, kernel_vec, conv_out, last): if isinstance(s[data_vec].op, tvm.te.ComputeOp) \ and "pad" in data_vec.op.tag: batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis + s[data_vec].vectorize(ic_block) parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih) s[data_vec].parallel(parallel_axis) data_vec = data_vec.op.input_tensors[0] - if autotvm.GLOBAL_SCOPE.in_tuning: - # only in autotuning, input data of conv2d_NCHWc will be 4-D. - # skip this part during tuning to make records accurate. - # this part will be folded during Relay fold_constant pass. - s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region") - s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region") - elif isinstance(kernel_vec.op, tvm.te.ComputeOp) and \ + if isinstance(kernel_vec.op, tvm.te.ComputeOp) and \ kernel_vec.name == 'kernel_vec': # data and kernel are not pre-computed, schedule layout transform here. # this should only be used by x86 conv2d_nchw, which is for diff --git a/topi/python/topi/x86/depthwise_conv2d.py b/topi/python/topi/x86/depthwise_conv2d.py index 240dee0bf737..0976c33bbb92 100644 --- a/topi/python/topi/x86/depthwise_conv2d.py +++ b/topi/python/topi/x86/depthwise_conv2d.py @@ -43,7 +43,6 @@ def _fallback_schedule(cfg, wkl): HPAD, WPAD = wkl.hpad, wkl.wpad HSTR, WSTR = wkl.hstride, wkl.wstride - out_height = (wkl.height + 2 * HPAD - wkl.hkernel) // HSTR + 1 out_width = (wkl.width + 2 * WPAD - wkl.wkernel) // WSTR + 1 oc_bn = 1 @@ -148,10 +147,21 @@ def depthwise_conv2d_NCHWc(cfg, data, kernel, strides, padding, dilation, # Pack data if raw 4-D data is provided. # This can only happen when autotuning. if len(data.shape) == 4: - data, kernel = _pack_data(cfg, data, kernel) - _, _, _, _, in_channel_block = get_const_tuple(data.shape) - out_channel_chunk, _, _, _, _, out_channel_block \ - = get_const_tuple(kernel.shape) + if autotvm.GLOBAL_SCOPE.in_tuning: + # Directly use modified data layout placeholder. + in_channel_block = cfg["tile_ic"].size[-1] + in_channel_chunk = in_channel // in_channel_block + out_channel_block = cfg["tile_oc"].size[-1] + out_channel_chunk = out_channel // out_channel_block + dshape = (batch, in_channel_chunk, in_height, in_width, in_channel_block) + data = tvm.te.placeholder(dshape, data.dtype, name="data") + kshape = (out_channel_chunk, 1, filter_height, filter_width, 1, out_channel_block) + kernel = tvm.te.placeholder(kshape, kernel.dtype, name="kernel") + else: + data, kernel = _pack_data(cfg, data, kernel) + _, _, _, _, in_channel_block = get_const_tuple(data.shape) + out_channel_chunk, _, _, _, _, out_channel_block \ + = get_const_tuple(kernel.shape) # padding stage DOPAD = (pad_top != 0 or pad_left != 0 or pad_down != 0 or pad_right != 0) @@ -207,16 +217,9 @@ def _schedule_depthwise_conv2d_NCHWc_impl(s, cfg, data_vec, kernel_vec, conv_out if isinstance(s[data_vec].op, tvm.te.ComputeOp) \ and "pad" in data_vec.op.tag: batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis + s[data_vec].vectorize(ic_block) parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih) s[data_vec].parallel(parallel_axis) - data_vec = data_vec.op.input_tensors[0] - - if autotvm.GLOBAL_SCOPE.in_tuning: - # only in autotuning, input data of conv2d_NCHWc will be 4-D. - # skip this part during tuning to make recrods accurate. - # this part will be folded during Relay fold_constant pass. - s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region") - s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region") C, O = conv_out, output CC = s.cache_write(C, 'global') @@ -264,12 +267,12 @@ def _schedule_depthwise_conv2d_NCHWc_impl(s, cfg, data_vec, kernel_vec, conv_out @depthwise_conv2d_infer_layout.register("cpu") def _depthwise_conv2d_infer_layout(workload, cfg): - _, data, kernel, strides, padding, dilation, dtype = workload + _, data, kernel, strides, padding, dilation, _, _, dtype = workload batch_size, in_channel, in_height, in_width = data[1] filter_channel, channel_multiplier, k_height, k_width = kernel[1] out_channel = filter_channel * channel_multiplier - out_height = (in_height + 2 * padding[0] - k_height) // strides[0] + 1 - out_width = (in_width + 2 * padding[1] - k_width) // strides[1] + 1 + out_height = (in_height + padding[0] + padding[2] - k_height) // strides[0] + 1 + out_width = (in_width + padding[1] + padding[3] - k_width) // strides[1] + 1 tile_ic, tile_oc = cfg["tile_ic"].size[-1], cfg["tile_oc"].size[-1] in_shape = (batch_size, in_channel // tile_ic, in_height, in_width, tile_ic) in_layout = "NCHW%dc" % tile_ic