From 418dbdea365d494482039e05f0e395dcc9918a28 Mon Sep 17 00:00:00 2001 From: Zhi <5145158+zhiics@users.noreply.github.com> Date: Sun, 5 Jan 2020 12:17:16 -0800 Subject: [PATCH] tensor_array split test (#4619) --- tests/python/relay/test_adt.py | 71 +++++++++++++++++++++++++++------- 1 file changed, 58 insertions(+), 13 deletions(-) diff --git a/tests/python/relay/test_adt.py b/tests/python/relay/test_adt.py index ffbca8453f34..c0185e438a8d 100644 --- a/tests/python/relay/test_adt.py +++ b/tests/python/relay/test_adt.py @@ -737,7 +737,7 @@ def run(dtype): expand_dims_func = p.get_var('tensor_expand_dims', dtype) tensor1 = p.get_var('tensor1', dtype) mod["main"] = relay.Function([x], expand_dims_func(tensor1(x))) - x_np = np.random.uniform(size=(1,)).astype(dtype) + x_np = np.random.uniform(low=0.0, high=8.0, size=(1,)).astype(dtype) expected = [np.expand_dims(x_np, axis=0)] check_tensor_array(mod, expected, x_np) run('float32') @@ -808,7 +808,7 @@ def run(dtype): tensor_array3 = write(tensor_array2, relay.const(2), tensor1(v)) tensor_array4 = stack(tensor_array3) mod["main"] = relay.Function([v], tensor_array4) - t = np.random.uniform(size=(1,)).astype(dtype) + t = np.random.uniform(low=0.0, high=8.0, size=(1,)).astype(dtype) expected = [np.stack([t, t, t])] check_tensor_array(mod, expected, t, dtype=dtype) run('float32') @@ -822,7 +822,7 @@ def run(dtype): unstack_tensor1 = p.get_var('tensor_array_unstack_tensor1', dtype) v = relay.var('v') mod["main"] = relay.Function([v], unstack_tensor1(v)) - t = np.random.uniform(size=(1,)).astype(dtype) + t = np.random.uniform(low=0.0, high=8.0, size=(1,)).astype(dtype) check_tensor_array(mod, t, t, dtype=dtype) run('float32') run('int32') @@ -838,7 +838,7 @@ def run(dtype): lower = relay.var('lower') upper = relay.var('upper') mod["main"] = relay.Function([v, lower, upper], take(tensor2(v), lower, upper)) - v_data = np.random.uniform(size=(10, 10)).astype(dtype) + v_data = np.random.uniform(low=0.0, high=8.0, size=(10, 10)).astype(dtype) expected = [np.take(v_data, range(2, 5), axis=0)] check_tensor_array(mod, expected, *(v_data, 2, 5), dtype=dtype) expected = [np.take(v_data, range(0, 9), axis=0)] @@ -857,8 +857,8 @@ def run(dtype): v2 = relay.var('v2') mod["main"] = relay.Function([v1, v2], concat(tensor1(v1), tensor1(v2))) - v1_data = np.random.uniform(size=(5,)).astype(dtype) - v2_data = np.random.uniform(size=(5,)).astype(dtype) + v1_data = np.random.uniform(low=0.0, high=8.0, size=(5,)).astype(dtype) + v2_data = np.random.uniform(low=0.0, high=8.0, size=(5,)).astype(dtype) expected = [np.concatenate((v1_data, v2_data))] check_tensor_array(mod, expected, *(v1_data, v2_data), dtype=dtype) run('float32') @@ -880,8 +880,8 @@ def run(dtype): tensor_array1 = write_func(tensor_array1, relay.const(1), tensor1(v2)) tensor_array_concat = concat_func(tensor_array1) mod["main"] = relay.Function([v1, v2], tensor_array_concat) - v1_data = np.random.uniform(size=(2, 3)).astype(dtype) - v2_data = np.random.uniform(size=(1, 3)).astype(dtype) + v1_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) + v2_data = np.random.uniform(low=0.0, high=8.0, size=(1, 3)).astype(dtype) expected = [np.concatenate((v1_data, v2_data), axis=0)] check_tensor_array(mod, expected, *(v1_data, v2_data), dtype=dtype) run('float32') @@ -924,12 +924,12 @@ def run(dtype): tensor_array_scatter) # initialize and check - v1_data = np.random.uniform(size=(2, 3)).astype(dtype) - v2_data = np.random.uniform(size=(2, 3)).astype(dtype) - v3_data = np.random.uniform(size=(2, 3)).astype(dtype) + v1_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) + v2_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) + v3_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) index_data = np.array([0, 1], dtype="int32") - val1_data = np.random.uniform(size=(2, 3)).astype(dtype) - val2_data = np.random.uniform(size=(2, 3)).astype(dtype) + val1_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) + val2_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) expected = [val1_data, val2_data, v3_data] check_tensor_array(mod, expected, *(v1_data, v2_data, v3_data, index_data, val1_data, @@ -938,6 +938,50 @@ def run(dtype): run('int32') +def test_tensor_array_split(): + def run(dtype): + mod = relay.Module() + p = Prelude(mod) + + # tensor array + v1 = relay.var('v1') + v2 = relay.var('v2') + v3 = relay.var('v2') + tensor_array = p.get_var('tensor_array', dtype) + tensor_array1 = tensor_array(relay.const(3)) + write_func = p.get_var('tensor_array_write', dtype) + split_func = p.get_var('tensor_array_split', dtype) + tensor2 = p.get_var('tensor2', dtype) + tensor_array1 = write_func(tensor_array1, relay.const(0), tensor2(v1)) + tensor_array1 = write_func(tensor_array1, relay.const(1), tensor2(v2)) + tensor_array1 = write_func(tensor_array1, relay.const(2), tensor2(v3)) + + # value tensor + value = relay.var('value') + + # lengths tensor + ta_len = relay.var('length') + + # create the scatter function + tensor_array_split = split_func(tensor_array1, tensor2(value), ta_len) + mod["main"] = relay.Function([v1, v2, v3, value, ta_len], + tensor_array_split) + + # initialize and check + v1_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) + v2_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) + v3_data = np.random.uniform(low=0.0, high=8.0, size=(2, 3)).astype(dtype) + value_data = np.random.uniform(low=0.0, high=8.0, size=(4, 3)).astype(dtype) + length_data = np.array([2, 2], dtype="int32") + expected = np.concatenate([value_data, v3_data]) + expected = np.split(expected, indices_or_sections=[2, 4]) + check_tensor_array(mod, expected, *(v1_data, v2_data, v3_data, + value_data, length_data), + dtype=dtype) + run('float32') + run('int32') + + if __name__ == "__main__": test_nat_constructor() test_double() @@ -972,3 +1016,4 @@ def run(dtype): test_tensor_concatenate() test_tensor_array_concat() test_tensor_array_scatter() + test_tensor_array_split()