Skip to content

Latest commit

 

History

History
134 lines (124 loc) · 6.97 KB

README.md

File metadata and controls

134 lines (124 loc) · 6.97 KB

Tpcds-dbt-benchmarks

I created this repository for a blogpost, I wrote, comparing 3 SQL engines (e.g. Spark, Duckdb, Trino) with dbt. The blogpost can be found here. This repository contains the tpcds queries inside a standard dbt project, which uses the respective dbt adapter.

Prerequisites

Data

The data is generated using the Databricks toolkit together with the Databricks sql perf. The resulting jars are added to a spark docker container following the instructions provided in eks spark benchmark and the full setup can be seen in data/Dockerfile.

Generate data locally

We use dsdgen of the databricks toolkit for generating the data. An example on how to use the resulting docker image:

docker build -f data/Dockerfile -t tpcds-benchmark .
docker run -v /tmp/tpcds:/var/data -it sql-benchmark /opt/spark/bin/spark-submit --master "local[*]" --name somename \
       --deploy-mode client --class com.amazonaws.eks.tpcds.DataGeneration local:///opt/spark/work-dir/eks-spark-benchmark-assembly-1.0.jar \ 
       /var/data /opt/tpcds-kit/tools parquet 1 10 false false true # These are the application arguments required by the DataGeneration class: data location, path to tpcds toolkit, data format, scale factor, number partitions, create partitioned fact tables, shuffle to get partitions into single files, set logging to WARN 

The previous command generates all input data as parquet files with a scale factor of 1 and 10 partitions (For the benchmark we used 100 and 100 as values). If you want to generate more date, you should change the corresponding parameters. The data is written to /var/data in the docker container which is mounted under /tmp/tpcds.

Generate data on eks

The same Spark container can be used when generating data in eks. If you add a role to the pod, you can directly write data to a s3 path.

Tpc-ds results

We ran the benchmark for all queries on m.2xlarge machines, which have 8 vcpu and 32Gb of RAM and attached 100GB of disk storage. All except 5 queries return successfully. I need to investigate further why these 5 queries go OOM, even on larger instances.

Query Trino (s) Duckdb (s) Spark (s)
q01 7.38 9.55 31.50
q02 28.28 18.12
q03 22.33 11.46 26.90
q04 354.57 83.04 545.89
q05 25.22 42.64 88.57
q06 54.67 41.28 70.02
q07 23.91 21.72 41.23
q08 19.52 13.75 29.15
q09 22.86 59.95 58.69
q10 12.56 20.16 36.29
q11 225.64 47.93 149.02
q12 12.57 5.15 17.90
q13 117.94 29.36 47.55
q14 333.01 147.68 204.48
q15 8.95 11.69 31.59
q16 75.78 27.44
q17 30.29 18.74 191.98
q18 10.32 16.84 46.28
q19 20.87 OOM 35.95
q20 9.91 5.05 22.44
q21 27.76 8.73 28.45
q22 93.56 26.91 81.50
q23 214.32 OOM 286.35
q24 51.12 25.96 116.97
q25 34.07 21.31 193.46
q26 9.94 10.65 30.31
q27 55.38 42.43 76.20
q28 20.05 45.84 85.91
q29 36.46 15.92 190.21
q30 7.07 10.01 27.84
q31 39.47 31.35 65.07
q32 6.05 9.58 30.59
q33 17.27 21.29 42.30
q34 16.92 7.89 30.12
q35 22.53 13.10 43.06
q36 72.11 30.01 33.54
q37 13.19 12.73 46.13
q38 41.08 15.84 58.64
q39 64.36 14.14 41.37
q40 15.09 8.84 67.51
q41 2.48 1.16 10.28
q42 24.22 7.15 23.14
q43 23.79 8.14 24.89
q44 10.61 20.78 33.81
q45 20.91 6.02 22.16
q46 25.02 13.50 39.19
q47 322.21 53.80 55.47
q48 116.01 13.83 40.38
q49 18.34 35.11 86.17
q50 32.86 11.07 86.15
q51 45.93 43.87 103.18
q52 16.35 7.17 22.88
q53 30.07 8.68 26.80
q54 24.61 67.14 67.80
q55 16.79 6.87 23.50
q56 16.91 19.42 40.19
q57 55.25 27.39 38.09
q58 129.86 23.86 40.57
q59 51.99 29.74 45.35
q60 18.99 18.17 39.73
q61 72.51 22.46
q62 20.22 4.42 21.11
q63 29.4 8.64 26.01
q64 118.74 OOM 324.72
q65 41.21 29.27 83.63
q66 38.89 14.57 39.42
q67 195.89 521.49 341.76
q68 25.82 15.25 43.10
q69 13.28 14.55 35.86
q70 / 20.36
q71 18.95 22.41 38.28
q72 2863.07 47.15 824.70
q73 14.3 7.76 30.24
q74 95.37 33.63 134.81
q75 58.01 53.12 106.56
q76 10.34 15.83 38.21
q77 20.31 29.11 49.37
q78 77.46 63.17 260.34
q79 36.80 13.92
q80 61.24 48.35 282.86
q81 6.82 8.38 30.84
q82 19.05 14.79 61.59
q83 25.28 8.15 23.61
q84 5.29 5.24 22.59
q85 18.91 12.43
q86 6.8 5.28 21.20
q87 40.21 17.78 65.56
q88 81.98 31.30 74.07
q89 36.66 9.75 29.37
q90 7.64 5.95 18.56
q91 7.73 5.09 21.26
q92 10.77 7.26 24.56
q93 25.82 15.25 148.63
q94 15.28 13.10 53.89
q95 27.22 OOM 128.79
q96 46.24 4.88 20.14
q97 22.99 20.31 70.36
q98 38.15 7.73 31.09
q99 24.59 7.05 27.56