forked from aelnouby/Text-to-Image-Synthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runtime.py
45 lines (41 loc) · 1.68 KB
/
runtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from trainer import Trainer
import argparse
from PIL import Image
import os
parser = argparse.ArgumentParser()
parser.add_argument("--type", default='gan')
parser.add_argument("--lr", default=0.0002, type=float)
parser.add_argument("--l1_coef", default=50, type=float)
parser.add_argument("--l2_coef", default=100, type=float)
parser.add_argument("--diter", default=5, type=int)
parser.add_argument("--cls", default=False, action='store_true')
parser.add_argument("--vis_screen", default='gan')
parser.add_argument("--save_path", default='')
parser.add_argument("--inference", default=False, action='store_true')
parser.add_argument('--pre_trained_disc', default=None)
parser.add_argument('--pre_trained_gen', default=None)
parser.add_argument('--dataset', default='flowers')
parser.add_argument('--split', default=0, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--epochs', default=200, type=int)
args = parser.parse_args()
trainer = Trainer(type=args.type,
dataset=args.dataset,
split=args.split,
lr=args.lr,
diter=args.diter,
vis_screen=args.vis_screen,
save_path=args.save_path,
l1_coef=args.l1_coef,
l2_coef=args.l2_coef,
pre_trained_disc=args.pre_trained_disc,
pre_trained_gen=args.pre_trained_gen,
batch_size=args.batch_size,
num_workers=args.num_workers,
epochs=args.epochs
)
if not args.inference:
trainer.train(args.cls)
else:
trainer.predict()