-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
79 lines (56 loc) · 1.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
# coding: utf-8
# %%
# %%
import os
import time
import requests
import torch
# %%
def subsample(dataset, ratio, random=False):
"""
Get indices of subsampled dataset with given ratio.
"""
idxs = list(range(len(dataset)))
idxs_sorted = {}
for idx, target in zip(idxs, dataset.targets):
if target in idxs_sorted:
idxs_sorted[target].append(idx)
else:
idxs_sorted[target] = [idx]
for idx in idxs_sorted:
size = len(idxs_sorted[idx])
lenghts = (int(size * ratio), size - int(size * ratio))
if random:
idxs_sorted[idx] = torch.utils.data.random_split(idxs_sorted[idx], lenghts)[0]
else:
idxs_sorted[idx] = idxs_sorted[idx][:lenghts[0]]
idxs = [idx for idxs in idxs_sorted.values() for idx in idxs]
return idxs
# %%
def download(url, path, force=False):
from pathlib import Path
from tqdm import tqdm
# This snippet is based on https://stackoverflow.com/a/37573701
if not force and os.path.exists(path):
return
# make dir
root_path = "/".join(path.split("/")[:-1])
if root_path != "":
os.makedirs(root_path, exist_ok=True)
# get url
response = requests.get(url, stream=True)
total_size_in_bytes= int(response.headers.get('content-length', 0))
block_size = 1024
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
# %%
import numpy as np
def restore(xs, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
mean, std = np.array(mean), np.array(std)
mean, std = mean.reshape([1, 3, 1, 1]), std.reshape([1, 3, 1, 1])
return torch.clamp((xs * std) + mean, min=0.0, max=1.0)