diff --git a/NAMESPACE b/NAMESPACE index ec56a0e..e443fb5 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -7,6 +7,7 @@ export(abbreviate_datasets) export(cf_cosine_plot) export(cf_ids) export(cf_meta) +export(cf_partner_summary) export(cf_partners) export(keys) export(keys2df) @@ -17,14 +18,21 @@ import(nat) importFrom(dplyr,.data) importFrom(dplyr,all_of) importFrom(dplyr,any_of) +importFrom(dplyr,arrange) importFrom(dplyr,case_when) +importFrom(dplyr,desc) importFrom(dplyr,distinct) +importFrom(dplyr,group_by) +importFrom(dplyr,left_join) importFrom(dplyr,mutate) +importFrom(dplyr,n_distinct) importFrom(dplyr,rename) importFrom(dplyr,rename_with) importFrom(dplyr,select) +importFrom(dplyr,summarise) importFrom(fafbseg,flytable_meta) importFrom(fafbseg,flywire_connectome_data_version) importFrom(fafbseg,flywire_ids) importFrom(fafbseg,flywire_partner_summary2) +importFrom(glue,glue) importFrom(magrittr,"%>%") diff --git a/R/partners.R b/R/partners.R index 529081d..09d85c4 100644 --- a/R/partners.R +++ b/R/partners.R @@ -126,3 +126,61 @@ connection_table2queryids <- function(x) { qx=dplyr::bind_rows(l) %>% distinct(id, dataset) } } + + +#' Summarise the connectivity of a set of neurons grouping by type +#' +#' @param rval Choose what the function will return. \code{sparse} and +#' \code{matrix} return sparse and dense (standard) matrices, respectively. +#' @inheritParams cf_partners +#' @return a data.frame or (sparse) matrix based on \code{rval}. The column +#' \code{n} refers to the number of \emph{partner} neurons. +#' @export +#' @details This function currently groups by dataset, and pre and postsynaptic +#' type. It does not currently group by side. The forms returning matrices rely +#' on \code{coconat::\link{partner_summary2adjacency_matrix}}. +#' +#' @examples +#' \dontrun{ +#' lal78in=cf_partner_summary(cf_ids("/type:LAL00[78]"), threshold=10, partners='in') +#' lal78in +#' lal78in %>% +#' tidyr::pivot_wider(id_cols = c(type.pre,dataset), +#' names_from = type.post, values_from = weight, values_fill = 0) +#' lal78in %>% +#' tidyr::pivot_wider(id_cols = c(type.pre), +#' names_from = c(type.post,dataset), values_from = weight, values_fill = 0) +#' } +#' @importFrom glue glue +#' @importFrom dplyr .data left_join group_by n_distinct summarise arrange desc +cf_partner_summary <- function(ids, threshold=1L, partners=c("inputs", "outputs"), + rval=c("data.frame", "sparse", "matrix")) { + # ids=expand_ids(ids) + partners=match.arg(partners) + rval=match.arg(rval) + pp=cf_partners(ids, threshold = threshold, partners = partners) + qmeta=cf_meta(ids) + + # query and partner suffixes + qfix=ifelse(partners=='inputs', "post", "pre") + pfix=setdiff(c("post", "pre"), qfix) + join_spec="key" + names(join_spec)=paste0(qfix, "_key") + suffix=paste0(".",c(pfix, qfix)) + + pp2 <- pp %>% + select(-dataset) %>% + left_join(qmeta, by = join_spec, suffix=suffix) %>% + group_by(dataset, type.pre, type.post) %>% + summarise(weight=sum(weight), n=n_distinct(.data[[glue("{pfix}_key")]]), + .groups='drop') %>% + arrange(desc(weight)) %>% + mutate(query=paste0(abbreviate_datasets(dataset),":", .data[[glue("type.{qfix}")]])) + if(rval=='data.frame') + return(pp2) + pp2 %>% + coconat::partner_summary2adjacency_matrix( + inputcol = "query", + outputcol = ifelse(partners=='outputs', "type.post","type.pre"), + standardise_input = F, sparse = rval=="sparse") +}